Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 118

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of a first-order method to estimate the failure probability of component subjected to thermal transients for optimization of design parameters

Okajima, Satoshi; Mori, Takero; Kikuchi, Norihiro; Tanaka, Masaaki; Miyazaki, Masashi

Mechanical Engineering Journal (Internet), 10(4), p.23-00042_1 - 23-00042_12, 2023/08

In this paper, we propose the simplified procedure to estimate failure probability of components subjected to thermal transient for the design optimization. Failure probability can be commonly used as an indicator of component integrity for various failure mechanisms. In order to reduce number of analyses required for one estimation, we have adopted the First Order Second Moment (FOSM) method as the estimation method of failure probability on the process of the optimization, and an orthogonal table in experiment design method is utilized to define conditions of the analyses for the evaluation of the input parameters for the FOSM method. The superposition of ramp responses is also utilized to evaluate the time history of thermal transient stress instead of finite element analysis. Through the demonstration study to optimize thickness of cylindrical vessel subjected to thermal transient derived from shutdown, we confirmed that the procedure can evaluate the failure probability depending on the cylinder thickness with practical calculation cost.

Journal Articles

Application of first-order method to estimate structural integrity in a probabilistic form of component subjected to thermal transient for optimization of design parameter

Okajima, Satoshi; Mori, Takero; Kikuchi, Norihiro; Tanaka, Masaaki; Miyazaki, Masashi

Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 7 Pages, 2022/08

In this paper, we propose the simplified procedure to estimate failure probability of components subjected to thermal transient for the design optimization. Failure probability can be commonly used as an indicator of component integrity for various failure mechanisms. In order to reduce number of analyses required for one estimation, we have adopted the First Order Second Moment (FOSM) method as the estimation method of failure probability on the process of the optimization, and an orthogonal table in experiment design method is utilized to define conditions of the analyses for the evaluation of the input parameters for the FOSM method. Through the demonstration study to optimize thickness of cylindrical vessel subjected to thermal transient derived from shutdown, we confirmed that the procedure can evaluate the failure probability depending on the cylinder thickness with practical calculation cost.

Journal Articles

Development of ARKADIA for the innovation of advanced nuclear reactor design process (Overview of optimization process development in design optimization support tool, ARKADIA-Design)

Tanaka, Masaaki; Doda, Norihiro; Yokoyama, Kenji; Mori, Takero; Okajima, Satoshi; Hashidate, Ryuta; Yada, Hiroki; Oki, Shigeo; Miyazaki, Masashi; Takaya, Shigeru

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2022/07

To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, development of an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) is undergoing to achieve the design of an advanced nuclear reactor as a safe, economic, and sustainable carbon-free energy source. In this paper, focusing on the ARKADIA-Design as a part of it, the progress in the development of optimization processes on the representative problems in the fields of the core design, the plant structure design, and the maintenance schedule planning are introduced.

Journal Articles

Hybridization of Bogoliubov quasiparticles between adjacent CuO$$_2$$ layers in the triple-layer cuprate Bi$$_2$$Sr$$_2$$Ca$$_2$$Cu$$_3$$O$$_{10+delta}$$ studied by angle-resolved photoemission spectroscopy

Ideta, Shinichiro*; Johnston, S.*; Yoshida, Teppei*; Tanaka, Kiyohisa*; Mori, Michiyasu; Anzai, Hiroaki*; Ino, Akihiro*; Arita, Masashi*; Namatame, Hirofumi*; Taniguchi, Masaki*; et al.

Physical Review Letters, 127(21), p.217004_1 - 217004_6, 2021/11

 Times Cited Count:1 Percentile:50.56(Physics, Multidisciplinary)

Journal Articles

Evaluation of the frequency response of the RF gap voltage monitor of the J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.840 - 844, 2021/10

The J-PARC RCS employs the dual-harmonic operation, in which the fundamental and the second harmonic RF voltages are used for the beam acceleration. The each harmonic voltage and phase applied for the acceleration gaps are controlled by the multiharmonic vector RF voltage control system using the signal from the cavity gap voltage monitor equipped with the one of the acceleration gaps of the each RF cavity. Since the bunch shape varies depending on the relative phase of each harmonic, it is important to evaluate the frequency response of the cavity gap voltage monitor. The measurements of frequency response of the cavity gap voltage monitor and beam tracking simulation considering the measurement were carried out. As a result, it was confirmed that the bunch shape of the beam tracking simulation reproduces the one measured at the 1MW beam operation well. The details of the frequency response measurement, the beam tracking simulation and the discussion of the cavity gap voltage monitor circuit are reported.

Journal Articles

Performance of the next-generation LLRF control system for the J-PARC RCS

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Yamamoto, Masanobu; Okita, Hidefumi; Omori, Chihiro*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.170 - 174, 2021/10

A stable and precise LLRF (Low Level RF) control system is indispensable for acceleration of high intensity proton beam in the J-PARC RCS. The original LLRF control system had been operated without major problems for more than ten years since the start of operation of the RCS, while maintenance of the system became difficult due to the obsolesce of the old FPGAs in the modules. We developed and installed the next-generation LLRF control system based on MTCA.4. The key function of the system is the multiharmonic vector rf voltage control feedback. We describe the system overview and the commissioning results. The performance of the beam loading compensation is significantly improved.

Journal Articles

Evaluations with autoencoder whether the image used for image recognition is appropriate

Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Furusawa, Masashi*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; Omori, Chihiro*; et al.

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.80 - 82, 2021/10

no abstracts in English

Journal Articles

Consideration of triple-harmonic operation for the J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3020 - 3022, 2021/08

In the J-PARC RCS, the dual-harmonic operation, in which each RF cavity is driven by superposition of the fundamental accelerating voltage and the second harmonic voltage, are employed. The dual-harmonic-operation significantly improves the bunching factor and is indispensable for acceleration of the high intensity beams. The original LLRF control system was replaced with the new system in 2019, which can control the amplitudes of the higher harmonics as well as the fundamental and second harmonics. Therefore we consider to use additionally the third harmonic voltage for further improvement of the bunching factor during acceleration. By the triple-harmonic operation, the flat RF bucket can be realized and beam simulation results indicate that the bunching factor can be improved about 30% at maximum. In this presentation, we describe the longitudinal simulation studies of the triple-harmonic operation. Also the preliminary test results are presented.

Journal Articles

Vacuum tube operation tuning for a high intensity beam acceleration in J-PARC RCS

Yamamoto, Masanobu; Okita, Hidefumi; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; et al.

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.1884 - 1886, 2021/08

Tetrode vacuum tubes in J-PARC RCS are used under a reduced filament voltage condition compared with the rating value to prolong the tube lifetime. For the first time after 60,000 hour of operation in the RCS, one tube has reached the end of its life in 2020. Therefore, the reduced filament voltage works well because the tube has been running beyond an expected lifetime suggested by the tube manufacturer. However, the reduced filament voltage decreased the electron emission from the filament. Although the large amplitude of the anode current is necessary for the high intensity beam acceleration to compensate a wake voltage, a solid-state amplifier to drive a control grid circuit almost reaches the output power limit owing to the poor electron emission from the filament. We changed the filament voltage reduction rate from 15% to 5%. The required power of the solid-state amplifier was fairly reduced, whereas the accelerated beam power remained the same. We describe the measurement results of the vacuum tube parameters in terms of the filament voltage tuning.

Journal Articles

Commissioning of the next-generation LLRF control system for the Rapid Cycling Synchrotron of the Japan Proton Accelerator Research Complex

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Yamamoto, Masanobu; Okita, Hidefumi; Omori, Chihiro*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Nuclear Instruments and Methods in Physics Research A, 999, p.165211_1 - 165211_11, 2021/05

 Times Cited Count:3 Percentile:58.42(Instruments & Instrumentation)

The low level rf (LLRF) control system has key roles for the stable acceleration of the high intensity beam. The original LLRF control system for the RCS of J-PARC has been working nicely without major issues for more than ten years since the operation of the RCS started in 2007. Due to the obsolescence of the key digital devices, it is difficult to maintain the original system for a longer period, therefore we developed the next-generation LLRF control system. All of the LLRF functions of the new system were tested and commissioned. In this article, we describe the commissioning of two key functions, the phase feedback and the multiharmonic vector rf voltage control feedback for twelve cavities. The commissioning methodologies and beam test results are presented. The stable acceleration of the high intensity beam at the design intensity of $$8.3times 10^{13}$$ ppp is achieved. The next-generation LLRF control system has been successfully deployed and commissioned.

Journal Articles

Spin excitations of the $$S$$=1/2 one-dimensional Ising-like antiferromagnet BaCo$$_{2}$$V$$_{2}$$O$$_{8}$$ in transverse magnetic fields

Okutani, Akira*; Onishi, Hiroaki; Kimura, Shojiro*; Takeuchi, Tetsuya*; Kida, Takanori*; Mori, Michiyasu; Miyake, Atsushi*; Tokunaga, Masashi*; Kindo, Koichi*; Hagiwara, Masayuki*

Journal of the Physical Society of Japan, 90(4), p.044704_1 - 044704_9, 2021/04

 Times Cited Count:1 Percentile:17.22(Physics, Multidisciplinary)

Journal Articles

Operation experience of Tetrode vacuum tubes in J-PARC Ring RF system

Yamamoto, Masanobu; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Nomura, Masahiro; Omori, Chihiro*; Shimada, Taihei; Sugiyama, Yasuyuki*; Tamura, Fumihiko; Yoshii, Masahito*

JPS Conference Proceedings (Internet), 33, p.011022_1 - 011022_6, 2021/03

A Tetrode vacuum tubes (Thales TH589) are used in the J-PARC ring rf system. The operation has started in 2007, and the total operation time is more than 50,000 hours. There is no tube which reaches the end of life except an initial failure in the 3 GeV synchrotron. TH589 has a thoriated tungsten filament and it is carburized to suppress an evaporation of the thorium. The resistance of the filament decreases through the decarburization process after the filament operation has started. The tube constructor suggests that reduced filament voltage up to 10% compared with the rated value is effective to suppress the decarburization. However, the filament current increases even though the voltage is kept constant due to the resistance reduction, and it is observed that an increment of the power dissipation promotes the decarburization. This means that keeping the filament voltage constant is not enough; keeping the power dissipation constant is necessary to prolong the tube life time, and we employ a procedure to decrease the current regularly.

Journal Articles

Soft X-ray irradiation induced metallization of layered TiNCl

Kataoka, Noriyuki*; Tanaka, Masashi*; Hosoda, Wataru*; Taniguchi, Takumi*; Fujimori, Shinichi; Wakita, Takanori*; Muraoka, Yuji*; Yokoya, Takashi*

Journal of Physics; Condensed Matter, 33(3), p.035501_1 - 035501_6, 2021/01

 Times Cited Count:4 Percentile:34.98(Physics, Condensed Matter)

Journal Articles

Applying image recognition technology by convolutional neural networks to mountain plot images

Nomura, Masahiro; Tamura, Fumihiko; Shimada, Taihei; Yamamoto, Masanobu; Furusawa, Masashi*; Sugiyama, Yasuyuki*; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Yoshii, Masahito*

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 67, 2020/09

Image recognition using a convolutional neural network (CNN) has been used in a wide range of fields and has produced excellent results. If this image recognition technology is used effectively, it should be possible to obtain information from an image equal to or more than the information that a person can obtain from an image. At J-PARC, researchers with specialized knowledge obtain beam information needed to adjust the equipment from an image called mountain plot. In this study, we applied the image recognition technology by using CNN to this mountain plot image, and tried to obtain the information about the beam necessary for adjustment. As a result, we were able to obtain more information than is currently available by using the image recognition technology. In the future, we plan to adjust the equipment based on the information actually obtained from the image recognition technology and confirm its effectiveness

Journal Articles

Benchmarking of longitudinal calculation code BLonD for Application to J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.674 - 678, 2020/09

Longitudinal beam simulation code BLonD (Beam Longitudinal Dynamics), which has been developed by CERN in recent years, is being used accelerator facilities around the world. BLonD can simulate longitudinal beam motion considering with wake voltage and space charge effect and is written by Python, which makes it highly readable and general-purpose code. We are currently conducting a benchmark of BLonD aiming at studying for further improvements of acceleration technology and stable operation of the J-PARC 3GeV synchrotron (RCS). The bunching factor, which express the longitudinal beam charge distribution, calculated by BLonD simulation reflected by the current 1MW beam operation parameters reproduce the experimental results well and the validity of BLonD for RCS longitudinal beam simulation was confirmed.

Journal Articles

Production of $$^{266}$$Bh in the $$^{248}$$Cm($$^{23}$$Na,5$$n$$)$$^{266}$$Bh reaction and its decay properties

Haba, Hiromitsu*; Fan, F.*; Kaji, Daiya*; Kasamatsu, Yoshitaka*; Kikunaga, Hidetoshi*; Komori, Yukiko*; Kondo, Narumi*; Kudo, Hisaaki*; Morimoto, Koji*; Morita, Kosuke*; et al.

Physical Review C, 102(2), p.024625_1 - 024625_12, 2020/08

 Times Cited Count:6 Percentile:60.4(Physics, Nuclear)

Journal Articles

Simulations of beam loading compensation in a wideband accelerating cavity using a circuit simulator including a LLRF feedback control

Tamura, Fumihiko; Yamamoto, Masanobu; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Omori, Chihiro*; Shimada, Taihei; Nomura, Masahiro; Hasegawa, Katsushi*; Hara, Keigo*; Furusawa, Masashi*

Journal of Physics; Conference Series, 1350(1), p.012189_1 - 012189_7, 2019/12

 Times Cited Count:0 Percentile:52.4

Magnetic alloy cavities are employed in the J-PARC RCS to generate high accelerating voltages. The cavity, which is driven by a vacuum tube amplifier, has a wideband frequency response and the beam loading in the cavity is multiharmonic. Therefore, the tube must generate a multiharmonic output current. An LTspice circuit model is developed to analyze the vacuum tube operation and the compensation of the multiharmonic beam loading. The model includes the cavity, tube amplifier, beam current, and LLRF feedback control. The feedback control consists of the I/Q demodulator including low pass filters, PI control, and I/Q modulator. In this presentation, we present the implementation of the LLRF functions in the LTspice simulations. The preliminary simulation results are also presented. The simulations fairly agree with the beam test results.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2018 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2019-017, 95 Pages, 2019/11

JAEA-Technology-2019-017.pdf:12.09MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background radiation monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in the aerial monitoring around FDNPS against nuclear emergency response. The results of monitoring around Shimane and Hamaoka Nuclear Power Stations in the fiscal 2018 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2018 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; et al.

JAEA-Technology 2019-016, 116 Pages, 2019/11

JAEA-Technology-2019-016.pdf:14.09MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results in the fiscal 2018 were summarized in this report. Discrimination method of gamma rays from Rn-progenies was also utilized to evaluate their effect on aerial radiation monitoring. In addition, analysis taken topographical effects into consideration was applied to previous results of airborne monitoring to improve the precision of conventional method.

Journal Articles

Multiharmonic vector rf voltage control for wideband cavities driven by vacuum tube amplifiers in a rapid cycling synchrotron

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Yoshii, Masahito*; Yamamoto, Masanobu; Omori, Chihiro*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; Hara, Keigo*; Furusawa, Masashi*

Physical Review Accelerators and Beams (Internet), 22(9), p.092001_1 - 092001_22, 2019/09

AA2019-0048.pdf:6.64MB

 Times Cited Count:5 Percentile:48.53(Physics, Nuclear)

Beam loading compensation in the rf cavities is a key for acceleration of high intensity beams in 3 GeV RCS of the J-PARC. Since we employ wideband magnetic alloy rf cavities for the J-PARC RCS and the wake voltage contains several harmonics, a multiharmonic beam loading compensation is required. The multiharmonic rf feedforward for the most important six harmonics is implemented in the existing low level rf (LLRF) control system, which has been working fairly well for acceleration of high intensity beams of up to 1 MW. However, we found the degradation of the performance for compensation of the feedforward with very high intensity beams. Therefore, a multiharmonic vector rf voltage control has been developed. The detail of system configuration, commissioning methodology, and beam test results using very high intensity beams are described. The beam loading by the 1 MW equivalent beam in the cavity is successfully compensated.

118 (Records 1-20 displayed on this page)