Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 105

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on actinide burning core concepts for the future phaseout of a fast reactor fuel cycle

Mori, Tetsuya; Naganuma, Masayuki; Oki, Shigeo

Nuclear Technology, 209(4), p.532 - 548, 2023/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

This paper deals with a conceptual study on a plutonium (Pu) and minor actinide (MA) burning fast reactor core for the distant future phaseout of a fast-reactor fuel cycle after it is commercialized and used for a long time. This burning core aims to reduce the Pu and MA inventories contained in the fuel cycle through multiple recycling. A key point for the core design is the degradation of Pu and MA during multiple recycling. This degradation affects the core feasibility by increasing the sodium void reactivity and decreasing the absolute value of the Doppler constant. A feasible core concept was found by incorporating the following three factors to improve the reactivity coefficients: core flattening, fuel burnup reduction, and the use of silicon carbide (SiC) in the cladding and wrapper tubes. Notably, softening the neutron spectrum using the SiC structural material not only improved the reactivity coefficients but also indirectly mitigated the degradation of Pu and MA. Consequently, the designed core allowed for multiple recycling to continue until the Pu and MA reduced significantly, particularly by about 99% in a phaseout scenario starting from a fast-reactor fleet of 30-GWe nuclear power capacity. Fast reactors were found to have the potential to become self-contained energy systems that can minimize the inventories of Pu they produced themselves, as well as long-lived MA. Fast reactors can be among the important options for environmental burden reduction in the future.

Journal Articles

Geochemical and grain composition analysis of embankment and debris flow deposits in the Izusan area, Atami City, Shizuoka Prefecture, central Japan

Kitamura, Akihisa*; Okazaki, Sota*; Kondo, Mitsuru*; Watanabe, Takahiro; Nakanishi, Toshimichi*; Hori, Rie*; Ikeda, Masayuki*; Ichimura, Koji; Nakagawa, Yuki; Mori, Hideki*

Shizuoka Daigaku Chikyu Kagaku Kenkyu Hokoku, (49), p.73 - 86, 2022/07

On July 3 2021, a debris flow caused by a landslide from a landfill occurred along the Aizome River in the Izusan area of Atami City, Shizuoka. In this study, debris flow deposits and soil samples were characterized in terms of their sedimentology and geochemically analyzed.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Spin excitations of the $$S$$=1/2 one-dimensional Ising-like antiferromagnet BaCo$$_{2}$$V$$_{2}$$O$$_{8}$$ in transverse magnetic fields

Okutani, Akira*; Onishi, Hiroaki; Kimura, Shojiro*; Takeuchi, Tetsuya*; Kida, Takanori*; Mori, Michiyasu; Miyake, Atsushi*; Tokunaga, Masashi*; Kindo, Koichi*; Hagiwara, Masayuki*

Journal of the Physical Society of Japan, 90(4), p.044704_1 - 044704_9, 2021/04

 Times Cited Count:3 Percentile:30.35(Physics, Multidisciplinary)

JAEA Reports

Background radiation monitoring using manned helicopter for establishment of technique of nuclear emergency response in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2018-016, 98 Pages, 2019/02

JAEA-Technology-2018-016.pdf:18.64MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in Fukushima against nuclear emergency response. The results of monitoring around Tomari, Kashiwazaki-Kariwa and Genkai Nuclear Power Station in the fiscal 2017 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; et al.

JAEA-Technology 2018-015, 120 Pages, 2019/02

JAEA-Technology-2018-015.pdf:15.01MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. The results in the fiscal 2017 were summarized in this report. In addition, we developed and systemized the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS data error.

Journal Articles

Retreat from stress; Rattling in a planar coordination

Suekuni, Koichiro*; Lee, C. H.*; Tanaka, Hiromi*; Nishibori, Eiji*; Nakamura, Atsushi*; Kasai, Hidetaka*; Mori, Hitoshi*; Usui, Hidetomo*; Ochi, Masayuki*; Hasegawa, Takumi*; et al.

Advanced Materials, 30(13), p.1706230_1 - 1706230_6, 2018/03

 Times Cited Count:51 Percentile:89.35(Chemistry, Multidisciplinary)

Thermoelectric materials for highly efficient devices must satisfy conflicting requirements of high electrical conductivity and low thermal conductivity. In this paper, we studied the crystal structure and phonon dynamics of tetrahedrites (Cu,Zn)$$_{12}$$(Sb,As)$$_{4}$$S$$_{13}$$. The results revealed that the Cu atoms in a planar coordination are rattling, which effectively scatter phonons. These findings provide a new strategy for the development of highly efficient thermoelectric materials with planar coordination.

JAEA Reports

Background radiation monitoring using manned helicopter for establishment of technique of nuclear emergency response in the fiscal year 2016 (Contract research)

Sanada, Yukihisa; Mori, Airi; Iwai, Takeyuki; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo; Sato, Yoshiharu; et al.

JAEA-Technology 2017-035, 69 Pages, 2018/02

JAEA-Technology-2017-035.pdf:32.92MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We carried out the background monitoring around the nuclear power stations of the whole country to apply a technique of the airborne radiation monitoring that is cultivated in Fukushima as a technology of nuclear emergency response. This result of the aerial radiation monitoring using the manned helicopter around Ooi, Takahama and Ikata Nuclear Power Station and in the fiscal 2016 were summarized in the report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2016 (Contract research)

Sanada, Yukihisa; Mori, Airi; Iwai, Takeyuki; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo; Sato, Yoshiharu; et al.

JAEA-Technology 2017-034, 117 Pages, 2018/02

JAEA-Technology-2017-034.pdf:25.18MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. This result of the aerial radiation monitoring using the manned helicopter in the fiscal 2016 were summarized in the report. In addition, we developed the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS position error.

Journal Articles

Magnetic structure and dispersion relation of the $$S$$=1/2 quasi-one-dimensional Ising-like antiferromagnet BaCo$$_{2}$$V$$_{2}$$O$$_{8}$$ in a transverse magnetic field

Matsuda, Masaaki*; Onishi, Hiroaki; Okutani, Akira*; Ma, J.*; Agrawal, H.*; Hong, T.*; Pajerowski, D. M.*; Copley, J. R. D.*; Okunishi, Koichi*; Mori, Michiyasu; et al.

Physical Review B, 96(2), p.024439_1 - 024439_8, 2017/07

 Times Cited Count:12 Percentile:51.46(Materials Science, Multidisciplinary)

JAEA Reports

Radiation monitoring using manned helicopter around the Nuclear Power Station in the fiscal year 2015 (Contract research)

Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika*; Yamada, Tsutomu*; et al.

JAEA-Research 2016-016, 131 Pages, 2016/10

JAEA-Research-2016-016.pdf:20.59MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2013

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.

JAEA-Review 2014-038, 137 Pages, 2014/12

JAEA-Review-2014-038.pdf:162.61MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

High power laser developments with femtosecond to nanosecond pulse durations for laser shock science and engineering

Kiriyama, Hiromitsu; Mori, Michiaki; Suzuki, Masayuki*; Daito, Izuru*; Okada, Hajime; Ochi, Yoshihiro; Tanaka, Momoko; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; et al.

Reza Kenkyu, 42(6), p.441 - 447, 2014/06

We describe three specific high power laser systems that are being developed in our laboratory for many applications in high field science, nonlinear optics and material processing. We report on a femtosecond petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 20 J of 40 fs pulse duration, a picosecond high intensity Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 mJ of 0.5 ps pulse duration, and a nanosecond high repetition rate Nd:YAG laser system that can provide an average power of 360 W with a pulse duration of 30 ns delivered at a 1 kHz repetition rate. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Fermi surface and magnetic properties of antiferromagnet EuBi$$_3$$

Nakamura, Ai*; Hiranaka, Yuichi*; Hedo, Masato*; Nakama, Takao*; Tatetsu, Yasutomi*; Maehira, Takahiro*; Miura, Yasunao*; Mori, Akinobu*; Tsutsumi, Hiroki*; Hirose, Yusuke*; et al.

Journal of the Physical Society of Japan, 82(12), p.124708_1 - 124708_6, 2013/12

 Times Cited Count:21 Percentile:72.6(Physics, Multidisciplinary)

Journal Articles

Magnetic and Fermi surface properties of EuGa$$_4$$

Nakamura, Ai*; Hiranaka, Yuichi*; Hedo, Masato*; Nakama, Takao*; Miura, Yasunao*; Tsutsumi, Hiroki*; Mori, Akinobu*; Ishida, Kazuhiro*; Mitamura, Katsuya*; Hirose, Yusuke*; et al.

Journal of the Physical Society of Japan, 82(10), p.104703_1 - 104703_10, 2013/10

 Times Cited Count:35 Percentile:81.11(Physics, Multidisciplinary)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Ultra-intense, high spatio-temporal quality petawatt-class laser system and applications

Kiriyama, Hiromitsu; Shimomura, Takuya; Mori, Michiaki; Nakai, Yoshiki*; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Pirozhkov, A. S.; Esirkepov, T. Z.; Hayashi, Yukio; et al.

Applied Sciences (Internet), 3(1), p.214 - 250, 2013/03

 Times Cited Count:15 Percentile:50(Chemistry, Multidisciplinary)

This paper reviews techniques for improving the temporal contrast and spatial beam quality in an ultra-intense laser system that is based on chirped-pulse amplification (CPA). We describe the design, performance, and characterization of our laser system, which has the potential for achieving a peak power of 600 TW. We also describe applications of the laser system in the relativistically dominant regime of laser-matter interactions and discuss a compact, high efficiency diode-pumped laser system.

Journal Articles

High-temperature continuous operation of the HTTR

Takamatsu, Kuniyoshi; Sawa, Kazuhiro; Kunitomi, Kazuhiko; Hino, Ryutaro; Ogawa, Masuro; Komori, Yoshihiro; Nakazawa, Toshio*; Iyoku, Tatsuo; Fujimoto, Nozomu; Nishihara, Tetsuo; et al.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 10(4), p.290 - 300, 2011/12

A high temperature (950$$^{circ}$$C) continuous operation has been performed for 50 days on the HTTR from January to March in 2010, and the potential to supply stable heat of high temperature for hydrogen production for a long time was demonstrated for the first time in the world. This successful operation could establish technological basis of HTGRs and show potential of nuclear energy as heat source for innovative thermo-chemical-based hydrogen production, emitting greenhouse gases on a "low-carbon path" for the first time in the world.

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2009 - March 31, 2010)

Kanamori, Masashi; Shirakawa, Yusuke; Yamashita, Toshiyuki; Okuno, Hiroshi; Terunuma, Hiroshi; Ikeda, Takeshi; Sato, Sohei; Terakado, Naoya; Nagakura, Tomohiro; Fukumoto, Masahiro; et al.

JAEA-Review 2010-037, 60 Pages, 2010/09

JAEA-Review-2010-037.pdf:3.11MB

When a nuclear emergency occurs in Japan, the Japan Atomic Energy Agency (JAEA) provides technical support to the National government, local governments, police, fire station and license holder etc. They are designated public organizations conforming to the basic law on emergency preparedness and the basic plan for disaster countermeasures. The Nuclear Emergency Assistance & Training Center (NEAT) of JAEA provides a comprehensive range of technical support activities to an off-site center in case of a nuclear emergency. Specifically, NEAT gives technical advice and information, provides for the dispatch of specialist as required, supplies emergency equipments and materials to the national government and municipal office. NEAT provide various lectures and training course concerning nuclear disaster prevention for those personnel taking an active part in emergency response organizations at normal time. And NEAT researches on nuclear disaster prevention and also cooperate with international organizations. This annual report summarized the activities of JAEA/NEAT in the fiscal year 2009.

105 (Records 1-20 displayed on this page)