Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.
Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12
Kawabata, Kuniaki; Imabuchi, Takashi; Shirasaki, Norihito*; Suzuki, Soichiro; Ito, Rintaro; Aoki, Yuto; Omori, Takazumi
ROBOMECH Journal (Internet), 11, p.11_1 - 11_11, 2024/09
Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:21 Percentile:95.35(Multidisciplinary Sciences)no abstracts in English
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Times Cited Count:3 Percentile:67.11(Astronomy & Astrophysics)Detailed -ray spectroscopy of the exotic neon isotope
Ne has been performed using the one-neutron removal reaction from
Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for
Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Kazama, Hiroyuki; Konashi, Kenji*; Suzuki, Tatsuya*; Koyama, Shinichi; Maeda, Koji; Sekio, Yoshihiro; Onishi, Takashi; Abe, Chikage*; Shikamori, Yasuyuki*; Nagai, Yasuyoshi*
Journal of Analytical Atomic Spectrometry, 38(8), p.1676 - 1681, 2023/07
Times Cited Count:3 Percentile:59.08(Chemistry, Analytical)Mori, Takashi*; Shimada, Takahiro*; Kai, Satoru*; Otani, Akihito*; Yamamoto, Tomohiko; Yan, X.
Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 8 Pages, 2023/07
Mori, Takashi*; Shimada, Takahiro*; Kai, Satoru*; Otani, Akihito*; Yamamoto, Tomohiko; Yan, X.
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05
Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.
Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Wallerberger, M.*; Badr, S.*; Hoshino, Shintaro*; Huber, S.*; Kakizawa, Fumiya*; Koretsune, Takashi*; Nagai, Yuki; Nogaki, Kosuke*; Nomoto, Takuya*; Mori, Hitoshi*; et al.
Software X (Internet), 21, p.101266_1 - 101266_7, 2023/02
Times Cited Count:20 Percentile:91.80(Computer Science, Software Engineering)no abstracts in English
Tobita, Minoru*; Konda, Miki; Omori, Takeshi*; Nabatame, Tsutomu*; Onizawa, Takashi*; Kurosawa, Katsuaki*; Haraga, Tomoko; Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; et al.
JAEA-Data/Code 2022-007, 40 Pages, 2022/11
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete, ash, ceramic and brick samples generated from JRR-3, JRR4 and JRTF facilities. In this report, we summarized the radioactivity concentrations of 24 radionuclides (H,
C,
Cl,
Ca,
Co,
Ni,
Sr,
Nb,
Tc,
Ag,
I,
Cs,
Ba,
Eu,
Eu,
Ho,
U,
U,
Pu,
Pu,
Pu,
Am,
Am,
Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2020-2021.
Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Kanamori, Issaku*; Kaneko, Takashi*; Nakamura, Yoshifumi*; Rohrhofer, C.*; Suzuki, Kei
Proceedings of Science (Internet), 396, p.332_1 - 332_7, 2022/07
The axial U(1) anomaly in high-temperature QCD plays an important role to understand the phase diagram of QCD. The previous works by JLQCD Collaboration studied high-temperature QCD using 2-flavor dynamical chiral fermions such as the domain-wall fermion and reweighted overlap fermion. We extend our simulations to QCD with 2+1-flavor dynamical quarks, where the masses of the up, down, and strange quarks are near the physical point, and the temperatures are close to or higher than the pseudocritical temperature. In this talk, we will present the results for the Dirac spectrum, topological susceptibility, axial U(1) susceptibility, and hadronic collelators.
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Tobita, Minoru*; Haraga, Tomoko; Endo, Tsubasa*; Omori, Hiroyuki*; Mitsukai, Akina; Aono, Ryuji; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2021-013, 30 Pages, 2021/12
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JPDR facility. In this report, we summarized the radioactivity concentrations of 21 radionuclides (H,
C,
Cl,
Ca,
Co,
Ni,
Sr,
Nb,
Ag,
Cs,
Eu,
Eu,
Ho,
U,
U,
Pu,
Pu,
Pu,
Am,
Am,
Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2018-2019.
Kusano, Kanya*; Ichimoto, Kiyoshi*; Ishii, Mamoru*; Miyoshi, Yoshizumi*; Yoden, Shigeo*; Akiyoshi, Hideharu*; Asai, Ayumi*; Ebihara, Yusuke*; Fujiwara, Hitoshi*; Goto, Tadanori*; et al.
Earth, Planets and Space (Internet), 73(1), p.159_1 - 159_29, 2021/12
Times Cited Count:7 Percentile:42.16(Geosciences, Multidisciplinary)The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.
Mori, Kazuhiro*; Okumura, Ryo*; Yoshino, Hirofumi*; Kanayama, Masaya*; Sato, Setsuo*; Oba, Yojiro; Iwase, Kenji*; Hiraka, Haruhiro*; Hino, Masahiro*; Sano, Tadafumi*; et al.
JPS Conference Proceedings (Internet), 33, p.011093_1 - 011093_6, 2021/03
no abstracts in English
Kataoka, Noriyuki*; Tanaka, Masashi*; Hosoda, Wataru*; Taniguchi, Takumi*; Fujimori, Shinichi; Wakita, Takanori*; Muraoka, Yuji*; Yokoya, Takashi*
Journal of Physics; Condensed Matter, 33(3), p.035501_1 - 035501_6, 2021/01
Times Cited Count:4 Percentile:24.05(Physics, Condensed Matter)Kanamura, Shohei*; Takahashi, Yuya*; Omori, Takashi*; Nohira, Toshiyuki*; Sakamura, Yoshiharu*; Matsumura, Tatsuro
Denki Kagaku, 88(3), p.289 - 290, 2020/09
no abstracts in English
Wijesinghe, J. N.*; Koarashi, Jun; Atarashi-Andoh, Mariko; Kokubu, Yoko; Yamaguchi, Noriko*; Sase, Takashi*; Hosono, Mamoru*; Inoue, Yuzuru*; Mori, Yuki*; Hiradate, Shuntaro*
Geoderma, 374, p.114417_1 - 114417_10, 2020/09
Times Cited Count:12 Percentile:48.32(Soil Science)Yamauchi, Hiroki; Sari, D. P.*; Watanabe, Isao*; Yasui, Yukio*; Chang, L.-J.*; Kondo, Keietsu; Ito, Takashi; Ishikado, Motoyuki*; Hagihara, Masato*; Frontzek, M. D.*; et al.
Communications Materials (Internet), 1, p.43_1 - 43_6, 2020/07
High-temperature short-range order is discovered up to 720 K in MnRhSi by complementary use of neutron scattering and muon spin relaxation measurements.
Tang, T. L.*; Uesaka, Tomohiro*; Kawase, Shoichiro; Beaumel, D.*; Dozono, Masanori*; Fujii, Toshihiko*; Fukuda, Naoki*; Fukunaga, Taku*; Galindo-Uribarri, A.*; Hwang, S. H.*; et al.
Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05
Times Cited Count:18 Percentile:74.58(Physics, Multidisciplinary)The structure of a neutron-rich F nucleus is investigated by a quasifree (
) knockout reaction. The sum of spectroscopic factors of
orbital is found to be 1.0
0.3. The result shows that the
O core of
F nucleus significantly differs from a free
O nucleus, and the core consists of
35%
O
, and
65% excited
O. The result shows that the
O core of
F nucleus significantly differs from a free
O nucleus. The result may infer that the addition of the
proton considerably changes the neutron structure in
F from that in
O, which could be a possible mechanism responsible for the oxygen dripline anomaly.