Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Polarized neutrons observed nanometer-thick crystalline ice plates in frozen glucose solution

Kumada, Takayuki; Nakagawa, Hiroshi; Miura, Daisuke; Sekine, Yurina; Motokawa, Ryuhei; Hiroi, Kosuke; Inamura, Yasuhiro; Oku, Takayuki; Oishi, Kazuki*; Morikawa, Toshiaki*; et al.

Journal of Physical Chemistry Letters (Internet), 14(34), p.7638 - 7643, 2023/08

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

The structure of nano-ice crystals in rapidly frozen glucose solution was elucidated by using spin-contrast-variation small-angle neutron scattering, which distinguishes the nano-ice crystal signal from the frozen amorphous solution signal by the polarization-dependent neutron scattering. The analysis revealed that the nano-ice crystals form a planar structure with a diameter exceeding tens of nanometers and a thickness of 1 nm, which is close to the critical nucleation size. This result suggests that the glucose molecules are preferentially bound to a specific face of nano-ice crystals, and then block the crystal growth perpendicular to that face.

Journal Articles

Structure analysis of a buried interface between organic and porous inorganic layers using spin-contrast-variation neutron reflectivity

Kumada, Takayuki; Miura, Daisuke*; Akutsu, Kazuhiro*; Oishi, Kazuki*; Morikawa, Toshiaki*; Kawamura, Yukihiko*; Suzuki, Junichi*; Oku, Takayuki; Torikai, Naoya*; Niizeki, Tomotake*

Journal of Applied Crystallography, 55(5), p.1147 - 1153, 2022/10

AA2021-0903.pdf:1.06MB

 Times Cited Count:1 Percentile:27.54(Chemistry, Multidisciplinary)

Spin-contrast-variation neutron reflectivity obtains multiple reflectivity curves from a single sample and a single beam source. We used the strong point of the technique to reveal that, although methylated-perhydropolysilazane-derived silica layer has a higher porosity near the interface with acrylic urethane resin, the resin did not permeate the pore network.

Journal Articles

Development of spin-contrast-variation neutron powder diffractometry for extracting the structure factor of hydrogen atoms

Miura, Daisuke*; Kumada, Takayuki; Sekine, Yurina; Motokawa, Ryuhei; Nakagawa, Hiroshi; Oba, Yojiro; Ohara, Takashi; Takata, Shinichi; Hiroi, Kosuke; Morikawa, Toshiaki*; et al.

Journal of Applied Crystallography, 54(2), p.454 - 460, 2021/04

AA2020-0724.pdf:2.05MB

 Times Cited Count:1 Percentile:17.08(Chemistry, Multidisciplinary)

We developed a spin-contrast-variation neutron powder diffractometry technique that extracts the structure factor of hydrogen atoms, namely, the contribution of hydrogen atoms to a crystal structure factor. Crystals of L-glutamic acid were dispersed in a dpolystyrene matrix containing 4-methacryloyloxy-2,2,6,6,-tetramethyl-1-piperidinyloxy (TEMPO methacrylate) to polarize their proton spins dynamically. The intensities of the diffraction peaks of the sample changed according to the proton polarization, and the structure factor of the hydrogen atoms was extracted from the proton-polarization dependent intensities. This technique is expected to enable analyses of the structures of hydrogen-containing materials that are difficult to determine with conventional powder diffractometry.

Journal Articles

Development of spin-contrast-variation neutron reflectometry

Kumada, Takayuki; Akutsu, Kazuhiro*; Oishi, Kazuki*; Morikawa, Toshiaki*; Kawamura, Yukihiko*; Sahara, Masae*; Suzuki, Junichi*; Miura, Daisuke*; Torikai, Naoya*

J-PARC 20-02; J-PARC MLF Annual Report 2019, p.38 - 40, 2021/00

Journal Articles

Biogeochemical signals from deep microbial life in terrestrial crust

Suzuki, Yohei*; Konno, Yuta*; Fukuda, Akari*; Komatsu, Daisuke*; Hirota, Akinari*; Watanabe, Katsuaki*; Togo, Yoko*; Morikawa, Noritoshi*; Hagiwara, Hiroki; Aosai, Daisuke*; et al.

PLOS ONE (Internet), 9(12), p.e113063_1 - e113063_20, 2014/12

 Times Cited Count:12 Percentile:36.57(Multidisciplinary Sciences)

We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep groundwater of meteoric origin was collected from underground boreholes drilled into the Cretaceous Toki granite, central Japan. A large sulfur isotopic fractionation of 20-60 permil diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation ($$<$$ 30 permil) is not indicative of methanogenesis. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low energy fluxes.

Oral presentation

Nano-ice crystals in rapidly cooled sugar solutions observed by spin-contrast-variation small-angle neutron scattering

Kumada, Takayuki; Nakagawa, Hiroshi; Miura, Daisuke*; Sekine, Yurina; Motokawa, Ryuhei; Hiroi, Kosuke; Inamura, Yasuhiro; Oku, Takayuki; Oishi, Kazuki*; Morikawa, Toshiaki*; et al.

no journal, , 

The structure of nano-ice crystals in rapidly frozen sugar solution was elucidated by using spin-contrast-variation small-angle neutron scattering, which distinguishes the nano-ice crystal signal from the frozen amorphous solution signal by the polarization-dependent neutron scattering. The analysis revealed that the nano-ice crystals form a planar structure with a diameter exceeding tens of nanometers and a thickness of 1 nm, which is close to the critical nucleation size. This result suggests that the sugar molecules are preferentially bound to a specific face of nano-ice crystals, and then block the crystal growth perpendicular to that face.

Oral presentation

Crystal structure analysis of NaNbO$$_3$$ in high-temperature phase

Aso, Seiyu*; Matsuo, Hiroki*; Noguchi, Yuji*; Yoneda, Yasuhiro; Morikawa, Daisuke*; Tsuda, Kenji*

no journal, , 

Recently, higher energy storage density than that of typical ferroelectric BaTiO$$_3$$ has been achieved in NaNbO$$_3$$-based antiferroelectrics by utilizing the electric-field-induced phase transition between the antiferroelectric (AFE) and ferroelectric (FE) phases. In this study, we attempted to identify the space group using synchrotron X-ray diffraction and convergent electron diffraction in order to elucidate the full picture of the phase transition behavior in NaNbO$$_3$$ and Ca-doped NaNbO$$_3$$. On the other hand, the Ca-doped sample showed that the space group is Pnma, which is consistent with the results obtained by convergent electron diffraction measurements.

7 (Records 1-7 displayed on this page)
  • 1