Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Moriguchi, Yuichi*; Sato, Yosuke*; Morino, Yu*; Goto, Daisuke*; Sekiyama, Tsuyoshi*; Terada, Hiroaki; Takigawa, Masayuki*; Tsuruta, Haruo*; Yamazawa, Hiromi*
KEK Proceedings 2021-2, p.21 - 27, 2021/12
no abstracts in English
Sato, Yosuke*; Sekiyama, Tsuyoshi*; Fang, S.*; Kajino, Mizuo*; Qurel, A.*; Qulo, D.*; Kondo, Hiroaki*; Terada, Hiroaki; Kadowaki, Masanao; Takigawa, Masayuki*; et al.
Atmospheric Environment; X (Internet), 7, p.100086_1 - 100086_12, 2020/10
The third model intercomparison project for investigating the atmospheric behavior of Cs emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident (FDNPP-MIP) was conducted. A finer horizontal grid spacing (1 km) was used than in the previous FDNPP-MIP. Nine of the models used in the previous FDNPP-MIP were also used, and all models used identical source terms and meteorological fields. Our analyses indicated that most of the observed high atmospheric Cs concentrations were well simulated, and the good performance of some models improved the performance of the multi-model ensemble. The analyses also confirmed that the use of a finer grid resolution resulted in the meteorological field near FDNPP being better reproduced. The good representation of the wind field resulted in the reasonable simulation of the narrow distribution of high deposition amount to the northwest of FDNPP and the reduction of the overestimation over the area to the south of FDNPP. In contrast, the performance of the models in simulating plumes observed over the Nakadori area, the northern part of Gunma, and the Tokyo metropolitan area was slightly worse.
Iwasaki, Toshiki*; Sekiyama, Tsuyoshi*; Nakajima, Teruyuki*; Watanabe, Akira*; Suzuki, Yasushi*; Kondo, Hiroaki*; Morino, Yu*; Terada, Hiroaki; Nagai, Haruyasu; Takigawa, Masayuki*; et al.
Atmospheric Environment, 214, p.116830_1 - 116830_11, 2019/10
Times Cited Count:6 Percentile:22.99(Environmental Sciences)The utilization of numerical atmospheric dispersion prediction (NDP) models for accidental discharge of radioactive substances was recommended by a working group of the Meteorological Society of Japan. This paper is to validate the recommendation through NDP model intercomparison in the accidental release from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Emission intensity is assumed to be constant during the whole forecast period for the worst-case scenario unless time sequence of emission is available. We expect to utilize forecasts of surface air contaminations for preventions of inhalations of radioactive substances, and column-integrated amounts for mitigation of radiation exposure associated with wet deposition. Although NDP forecasts have ensemble spread, they commonly figure out relative risk in space and time. They are of great benefit to disseminating effective warnings to public without failure. The multi-model ensemble technique may be effective to improve the reliability.
Sato, Yosuke*; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Terada, Hiroaki; Nagai, Haruyasu; Kondo, Hiroaki*; Uchida, Junya*; Goto, Daisuke*; Qulo, D.*; et al.
Journal of Geophysical Research; Atmospheres, 123(20), p.11748 - 11765, 2018/10
Times Cited Count:45 Percentile:85.33(Meteorology & Atmospheric Sciences)A model intercomparison of the atmospheric dispersion of Cs emitted following the Fukushima Daiichi Nuclear Power Plant accident was conducted by 12 models to understand the behavior of Cs in the atmosphere. The same meteorological data, horizontal grid resolution, and an emission inventory were applied to all the models to focus on the model variability originating from the processes included in each model. The multi-model ensemble captured 40% of the observed Cs events, and the figure-of-merit in space for the total deposition of Cs exceeded 80. Our analyses indicated that the meteorological data were most critical for reproducing the Cs events. The results also revealed that the differences among the models were originated from the deposition and diffusion processes when the meteorological field was simulated well. However, the models with strong diffusion tended to overestimate the Cs concentrations.
Kitayama, Kyo*; Morino, Yu*; Takigawa, Masayuki*; Nakajima, Teruyuki*; Hayami, Hiroshi*; Nagai, Haruyasu; Terada, Hiroaki; Saito, Kazuo*; Shimbori, Toshiki*; Kajino, Mizuo*; et al.
Journal of Geophysical Research; Atmospheres, 123(14), p.7754 - 7770, 2018/07
Times Cited Count:26 Percentile:68.70(Meteorology & Atmospheric Sciences)We compared seven atmospheric transport model results for Cs released during the Fukushima Daiichi Nuclear Power Plant accident. All the results had been submitted for a model intercomparison project of the Science Council of Japan in 2014. We assessed model performance by comparing model results with observed hourly atmospheric concentrations of Cs, focusing on nine plumes over the Tohoku and Kanto regions. The results showed that model performance for Cs concentrations was highly variable among models and plumes. We also assessed model performance for accumulated Cs deposition. Simulated areas of high deposition were consistent with the plume pathways, though the models that best simulated Cs concentrations were different from those that best simulated deposition. The ensemble mean of all models consistently reproduced Cs concentrations and deposition well, suggesting that use of a multimodel ensemble results in more effective and consistent model performance.
Morino, Yuhei*; Hwang, S.; Imai, Kenichi; Tanida, Kiyoshi; LEPS Collaboration*; 46 of others*
Progress of Theoretical and Experimental Physics (Internet), 2015(1), p.013D01_1 - 013D01_11, 2015/01
Times Cited Count:9 Percentile:54.82(Physics, Multidisciplinary)Attie, O.*; Jayaprakash, A.*; Shah, H.*; Paulsen, I. T.*; Morino, Masato*; Takahashi, Yuka*; Narumi, Issey*; Sachidanandam, R.*; Sato, Katsuya; Ito, Masahiro*; et al.
Genome Announcements (Internet), 2(6), p.e01175-14_1 - e01175-14_2, 2014/11
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.
Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06
Times Cited Count:189 Percentile:99.42(Physics, Nuclear)Transverse momentum distributions and yields for , and in collisions at = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different collisions. We also present the scaling properties such as and scaling and discuss the mechanism of the particle production in collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.
Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04
Times Cited Count:9 Percentile:52.33(Physics, Nuclear)Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to collisions.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Y.*; Al-Bataineh, H.*; Alexander, J.*; Aoki, K.*; Aphecetche, L.*; Armendariz, R.*; et al.
Physical Review D, 83(5), p.052004_1 - 052004_26, 2011/03
Times Cited Count:180 Percentile:98.41(Astronomy & Astrophysics)The PHENIX experiment at RHIC has measured the invariant differential cross section for production of , , and mesons in collisions at = 200 GeV. The spectral shapes of all hadron transverse momentum distributions are well described by a Tsallis distribution functional form with only two parameters, and , determining the high and characterizing the low regions for the spectra, respectively. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.
Udagawa, Akira; Yudate, Kozo*; Kudo, Hisaaki; Sasuga, Tsuneo; Morino, Yoshiki*; Seguchi, Tadao
JAERI-Tech 95-007, 25 Pages, 1995/02
no abstracts in English
Iwasaki, Toshiki*; Nakajima, Teruyuki*; Watanabe, Akira*; Suzuki, Yasushi*; Kondo, Hiroaki*; Morino, Yu*; Terada, Hiroaki; Nagai, Haruyasu; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*
no journal, ,
no abstracts in English
Sato, Yosuke*; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Terada, Hiroaki; Nagai, Haruyasu; Kondo, Hiroaki*; Uchida, Junya*; Goto, Daisuke*; Qulo, D.*; et al.
no journal, ,
no abstracts in English
Yamazawa, Hiromi*; Sato, Yosuke*; Adachi, Shinichiro*; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Terada, Hiroaki; Kondo, Hiroaki*; Uchida, Junya*; Goto, Daisuke*; et al.
no journal, ,
Cs-137 released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident was conducted by 12 models. The present study focuses on differences in the model results of atmospheric Cs-137 concentration of Plume 2, which traveled southward in the morning of 15 March, 2011, in the area 100 to 200 km downwind from FDNPP by using the concentration data recently evaluated from gamma radiation spectral data at monitoring stations (MS data) and those measured from the suspended particulate matter filters (SPM data). Comparison was made from the following aspects: (1) plume arrival time, (2) concentration level, (3) cross-wind surface concentration profile, (4) vertical concentration profile and (5) mass balance of Cs-137 activity including deposition processes. Additional analyses were made also for Plume 4, which traveled over the same area on 16 March under rainy condition.
Takigawa, Masayuki*; Nagai, Haruyasu; Morino, Yu*; Sekiyama, Tsuyoshi*; Hayami, Hiroshi*; Tanaka, Taichu*; Nakajima, Teruyoshi*; Shibata, Tokushi*
no journal, ,
no abstracts in English
Yamazawa, Hiromi*; Sato, Yosuke*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Fang, S.*; Qurel, A.*; Qulo, D.*; Kondo, Hiroaki*; Terada, Hiroaki; Kadowaki, Masanao; et al.
no journal, ,
The 3rd model intercomparison project (MIP) of atmospheric dispersion model targeting on Cs emitted from Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 were conducted. All participated 9 models used the identical source term and meteorological data as in the previous MIP (2nd MIP), but finer horizontal grid resolution (1 km) than that of 2nd MIP (3 km) was used for understanding the behavior of atmospheric Cs in the vicinity of FDNPP. Results of the models elucidated that most of the observed high atmospheric Cs concentrations were well simulated, and the good performance of some models cancelled bad performance of some models when used as an ensemble, which highlights the advantage of multimodel ensemble. The analyses also indicated that the use of the finer grid resolution improved the meteorological field in the vicinity of FNDPP and the atmospheric Cs measured near FDNPP was more reasonably reproduced in 3rd MIP than 2nd MIP. As well as the evaluation of the performance of the model, we examined usefulness of the results of atmospheric dispersion simulation in an emergency. The analyses reported that the multimodel ensemble missed only 3% of the observed plumes, even if the absolute value of the simulated Cs in each model was different in the range of factor 3-6. The analyses also indicated that from six to eight models are required for making most of advantages of the multimodel ensemble.
Sato, Yosuke*; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Terada, Hiroaki; Nagai, Haruyasu; Kondo, Hiroaki*; Uchida, Junya*; Goto, Daisuke*; Qulo, D.*; et al.
no journal, ,
no abstracts in English
Yamazawa, Hiromi*; Sato, Yosuke*; Oura, Yasuji*; Moriguchi, Yuichi*; Terada, Hiroaki; Furuno, Akiko; Tsuzuki, Katsunori; Kadowaki, Masanao; Sekiyama, Tsuyoshi*; Adachi, Koji*; et al.
no journal, ,
no abstracts in English
Sato, Yosuke*; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Terada, Hiroaki; Nagai, Haruyasu; Kondo, Hiroaki*; Uchida, Junya*; Goto, Daisuke*; Qulo, D.*; et al.
no journal, ,
An intercomparison of atmospheric dispersion model targeting on the physical process of Cs released from the Fukushima Daiichi Nuclear Power Plant was conducted. Twelve atmospheric models participated in this project. To exclude the uncertainties of the model result due to the emission inventory and meteorological data, all models used the same emission and meteorological data. Concentration of Cs from the national suspended particle matter monitoring network and the deposition density by the aircraft were used for the comparison between results of the model and observation. Our analyses elucidated the figure of merit in space (FMS) of the model ensemble mean was improved from a previous model intercomparson about the accumulated deposition. The model ensemble mean captured approximately 36% of the observed high concentration. The inter-model spread of the capture rate was from 8% to 38%. It was originated from the difference in deposition and diffusion processes among the models.
Yamazawa, Hiromi*; Sato, Yosuke*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Goto, Daisuke*; Morino, Yu*; Kondo, Hiroaki*; Qurel, A.*; Fang, S.*; Takigawa, Masayuki*; et al.
no journal, ,
Following the previous atmospheric transport model intercomparison project (MIP2), a new model intercomparison (MIP3) has been conducted in which, out of 12 models in MIP2, 9 models are participating. The main aim of MIP3 is to examine the effects of using a refined meteorological data with a finer horizontal resolution of 1 km. The horizontal distribution Cs-137 deposition in the eastern part of Honshu Island calculated by the models were compared with the aerial survey results to find that the simple ensemble average of the 9 models was a little worse than that of the 12-model ensemble in MIP2 statistically. However, in the sector in the northwestern direction from the accidental site, the deposition pattern by the MIP3 ensemble is more consistent with the survey result compared with that of MIP2. As for the atmospheric concentrations, although the model performance for the plumes that traveled over wider areas was slightly poorer for MIP3 than MIP2, the MIP3 ensemble generally showed better performance for the plumes that affected the near area in the Hamadori area. This better performance can be attributed to the better representation of topography in the meteorological simulation.