Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Kazami; Moriya, Katsuhiro; Okita, Hidefumi; Yamada, Ippei; Chimura, Motoki; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Masanobu; Morishita, Takatoshi; et al.
Journal of Neutron Research, 26(2-3), p.59 - 67, 2024/01
The linac and 3 GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex was designed to provide 1-MW proton beams to the following facilities. Thanks to the improvement works of the accelerator system, we successfully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce requirement of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also been continuing study to achieve up to 2 MW beam in J-PARC RCS.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*
Journal of Physics; Conference Series, 2687(7), p.072006_1 - 072006_6, 2024/01
Times Cited Count:0 Percentile:0.00(Physics, Atomic, Molecular & Chemical)The mitigation of heat loading is one of the important issues for beam instrumentation to measure the high-power proton beam. Recently, the highly-oriented pyrolytic graphite (HOPG) material was used for the target probe of the bunch-shape monitor at the front-end in the Japan Proton Accelerator Research Complex (J-PARC). Since the thermal conductivity of the HOPG is high, it is suitable to measure the beam profile under the condition of high heat loading. As an application of the HOPG, for example, the thin HOPG may be used as a substitutive material of the target wire for the transverse profile monitor such as the wire scanner monitor. The possibility of the HOPG target for the beam profile monitor is discussed from some results of the test experiment using the 3-MeV negative hydrogen ion beam at the test stand.
Yamamoto, Kazami; Moriya, Katsuhiro; Okita, Hidefumi; Yamada, Ippei; Chimura, Motoki; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Masanobu; Morishita, Takatoshi; et al.
Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.270 - 273, 2023/10
The 3-GeV rapid-cycling synchrotron at the Japan Pro-ton Accelerator Research Complex was designed to provide 1-MW proton beams to the following facilities. Thanks to the improvement works of the accelerator system, we successfully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce requirement of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also continued study to achieve more than 2 MW beam in J-PARC RCS.
Tamura, Jun; Futatsukawa, Kenta*; Kondo, Yasuhiro; Liu, Y.*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Okabe, Kota; Yoshimoto, Masahiro
Nuclear Instruments and Methods in Physics Research A, 1049, p.168033_1 - 168033_7, 2023/04
Times Cited Count:2 Percentile:49.11(Instruments & Instrumentation)The Japan Proton Accelerator Research Complex (J-PARC) linac is a high-intensity accelerator in which beam loss is a critical issue. In the J-PARC linac, H beams are accelerated to 191~MeV by a separated drift tube linac (SDTL) and subsequently to 400~MeV by an annular-ring coupled structure (ACS). Because there are more beam loss mechanisms in H
linacs than in proton linacs, it is imperative to investigate the beam loss circumstances for beam loss mitigation. Electron-stripping phenomena, which generate uncontrollable H
particles, are characteristic beam loss factors of H
linacs. To clarify the beam loss causes in the J-PARC linac, a new diagnostic line was installed in the beam transport between the SDTL and ACS. In this diagnostic line, H
particles were separated from the H
beam, and the intensity profiles of the H
particles were successfully measured by horizontally scanning a graphite plate in the range where H
particles were distributed. By examining the intensity variation of the H
particles with different residual pressure levels, we proved that half of the H
particles in the SDTL section are generated by the residual gas stripping in the nominal beam operation of the J-PARC linac.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Morishita, Takatoshi; Nemoto, Yasuo*; Oguri, Hidetomo
Physical Review Accelerators and Beams (Internet), 26(3), p.032802_1 - 032802_12, 2023/03
Times Cited Count:3 Percentile:48.20(Physics, Nuclear)A bunch-shape monitor (BSM) is a useful device for performing longitudinal beam tuning using the pointwise longitudinal phase distribution measured at selected points in the beam transportation. To measure the longitudinal phase distribution of a low-energy negative hydrogen (H) ion beam, highly oriented pyrolytic graphite (HOPG) was adopted for the secondary-electron-emission target to mitigate the thermal damage due to the high-intensity beam loading. The HOPG target enabled the measurement of the longitudinal phase distribution at the center of a 3-MeV H
ion beam with a high peak current of about 50 mA. The longitudinal bunch width was measured using HOPG-BSM at the test stand, which was consistent with the beam simulation. The correlation measurement between the beam transverse and longitudinal planes was demonstrated using HOPG-BSM. The longitudinal Twiss and emittance measurement with the longitudinal Q-scan method was conducted using HOPG-BSM.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.330 - 332, 2023/01
In the J-PARC linac, a new bunch-shape monitor (BSM) is developed to stably measure the high-intensity and low-energy H beam by improving the strength of the target probe for the heat loading. The new target probe is made of the graphite. The first measurement of the longitudinal beam profile has been realized with the BSM at the core region of the high-intensity beam. Since the beam profile can be measured with the new BSM at any transverse position thanks to the new target probe, we propose the advanced application of the beam diagnostics with the BSM. In this presentation, some new approaches of the beam diagnostics with the BSM; the transverse profile measurement using the secondary electrons and the beam current evaluation from the transverse profile measurement, are discussed beyond the original usage of the BSM.
Oda, Kodai; Takayanagi, Tomohiro; Ono, Ayato; Horino, Koki*; Ueno, Tomoaki*; Sugita, Moe; Morishita, Takatoshi; Iinuma, Hiromi*; Tokuchi, Akira*; Kamezaki, Hiroaki*; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.610 - 614, 2023/01
Kicker system is being used to kick the accelerated 3 GeV beam into the transport lines in RCS of J-PARC. The current kicker power supply applies thyratrons to discharge switches. We are developing a new kicker power supply using next-generation power semiconductors. The timing of the semiconductor switch operation is determined by the input of an external trigger signal. Large timing jitter causes unstable output pulses and beam loss due to beam orbit deviate from reference orbit. Therefore, a low jitter circuit that achieves high repeatability of 2 ns or less will be developed for the new kicker power supply. A prototype trigger generator has been fabricated, and jitter has been evaluated. The results of the evaluation test and the circuit configuration plan for reducing jitter will be reported.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Miyao, Tomoaki*; Miura, Akihiko; Morishita, Takatoshi
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.212 - 214, 2023/01
In the J-PARC linac, the bunch-shape monitor (BSM) is developed to precisely and rapidly measure the longitudinal beam profile at the front-end, towards the improvement of the beam matching. The graphite target having the good strength to the high-power beam, has been introduced in order to resist the heat loading of the high-intensity beam. The resolution and other uncertainties were evaluated for the BSM. The longitudinal Twiss parameters and emittance were measured using the BSM and the IMPACT, which was the 3D particle-in-cell simulation code. The precision of the longitudinal emittance measurement was improved, by implementing uncertainties related to the BSM into the calculation. In this presentation, we will report a series of the measurement result, the method of the beam diagnostics with the BSM at the front-end, and the comparison between the measurement and the beam simulation.
Takeuchi, Yusuke*; Tojo, Junji*; Yamanaka, T.*; Nakazawa, Yuga*; Iinuma, Hiromi*; Kondo, Yasuhiro; Kitamura, Ryo; Morishita, Takatoshi; Cicek, E.*; Ego, Hiroyasu*; et al.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.562 - 564, 2022/10
A muon linac is under development for future muon g-2/EDM experiments at J-PARC. The linac provides a 212 MeV muon beam to an MRI-type compact storage ring. After the initial acceleration using the electrostatic field created by mesh and cylindrical electrodes, the muons are accelerated using four types of radio-frequency accelerators. To validate the linac design as a whole, end-to-end simulations were performed using General Particle Tracer. In addition, error studies were performed to investigate the effects on beam and spin dynamics of various errors in the accelerator components and input beam distribution. This paper describes the results of the end-to-end simulations and error studies.
Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Naito, Fujio*; Otani, Masashi*
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.177 - 179, 2022/09
Various types of cavity structures are typically used in hadron linacs, depending on the energy range of the beam particle. This is especially the case in a normal-conducting linac, because the cavity's acceleration efficiency varies with the velocity of the synchronous particle. For low-energy proton acceleration, while Alvarez drift-tube linacs (DTLs) are the most prevalent, TE-mode accelerating structures, which could also be called H-mode structures, are also widely used immediately after an initial radiofrequency quadrupole linac (RFQ). At present, the representative structures of TE modes are interdigital H-mode (IH) DTL and crossbar H-mode (CH) DTL, which are based on the TE11-mode pillbox cavity and TE21-mode pillbox cavity, respectively. In this presentation, acceleration efficiency of TE-mode structures including higher-order TE-modes such as TE31 and TE41 was comparatively reviewed with Alvarez DTL. This study shows that IH-DTL and CH-DTL have a larger shunt impedance than Alvarez DTL for proton acceleration below 10 MeV, and furthermore for the TEm1-mode structures, the rotational symmetry of the electric field improves with increasing angular index m.
Kondo, Yasuhiro; Kitamura, Ryo; Fuwa, Yasuhiro; Morishita, Takatoshi; Moriya, Katsuhiro; Takayanagi, Tomohiro; Otani, Masashi*; Cicek, E.*; Ego, Hiroyasu*; Fukao, Yoshinori*; et al.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.636 - 641, 2022/09
The muon linac project for the precise measurement of the muon anomalous magnetic and electric dipole moments, which is currently one of the hottest issues of the elementary particle physics, is in progress at J-PARC. The muons from the J-PARC muon facility are once cooled to room temperature, then accelerated up to 212 MeV with a normalized emittance of 1.5 mm mrad and a momentum spread of 0.1%. Four types of accelerating structures are adopted to obtain the efficient acceleration with a wide beta range from 0.01 to 0.94. The project is moving into the construction phase. We already demonstrated the re-acceleration scheme of the decelerated muons using a 324-MHz RFQ in 2017. The high-power test of the 324-MHz Interdigital H-mode (IH) DTL using a prototype cavity was performed in 2021. The fabrication of the first module of 14 modules of the 1296-MHz Disk and Washer (DAW) CCL will be done to confirm the production process. Moreover, the final design of the travelling wave accelerating structure for the high beta region is also proceeding. In this paper, the recent progress toward the realization of the world first muon linac will be presented.
Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Cicek, E.*; Ego, Hiroyasu*; Futatsukawa, Kenta*; Kawamura, N.*; Mibe, Tsutomu*; Mizobata, Satoshi*; Otani, Masashi*; et al.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.275 - 278, 2022/09
We conducted a high-power test of a prototype cavity of a 324-MHz inter-digital H-mode drift tube linac (IH-DTL) for the muon g-2/EDM experiment at J-PARC. This prototype cavity (short-IH) was developed to verify the fabrication methodology for the full-length IH cavity with a monolithic DT structure. After 40 h of conditioning, the short-IH has been stably operated with an RF power of 88 kW, which corresponds to 10% higher accelerating field than the design field (E0) of 3.0 MV/m. In addition, the thermal characteristics and frequency response were measured, verifying that the experimental data was consistent with the three-dimensional model. In this paper, the high-power tests of this IH-DTL for muon acceleration are described.
Takeuchi, Yusuke*; Tojo, Junji*; Nakazawa, Yuga*; Kondo, Yasuhiro; Kitamura, Ryo; Morishita, Takatoshi; Cicek, E.*; Ego, Hiroyasu*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; et al.
Proceedings of 13th International Particle Accelerator Conference (IPAC 22) (Internet), p.1534 - 1537, 2022/06
The muon g-2/EDM experiment is under preparation at Japan Proton Accelerator Research Complex (J-PARC), and the muon linear accelerator for the experiment is being developed. A Disk-and-Washer (DAW) cavity will be used for the medium-velocity part of the accelerator, and muons will be accelerated from =
= 0.3 to 0.7 with the operating frequency of 1.296 GHz. Machining, brazing, and low-power measurements of a prototype cell reflecting the design of the first tank of DAW were performed to identify fabrication problems. Several problems were identified, such as misalignment of washers during brazing, and some measures will be taken in the actual tank fabrication. In this paper, the results of the prototype cell fabrication will be reported.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo
JPS Conference Proceedings (Internet), 33, p.011012_1 - 011012_6, 2021/03
The new bunch shape monitor (BSM) is required to measure the bunch size of the high-intensity H beam with 3 MeV at the front-end section in the J-PARC linac. The carbon-nano tube wire and the graphene stick are good candidates for the target wire of the BSM, because these materials have the enough strength to detect the high-intensity beam. However, since the negative high voltage of more than a few kV should be applied to the wire in the BSM, the suppression of the discharge is the challenge to realize the new BSM. After the high-voltage test to investigate the effect of the discharge from the wire, the detection of the signal from the BSM was successful at the beam core with the peak current of 55 mA using the graphene stick. The preliminary result of the bunch-size measurement is reported in this presentation.
Morishita, Takatoshi
JPS Conference Proceedings (Internet), 33, p.011013_1 - 011013_6, 2021/03
A precise surveys and realignments have been performed in a long-term maintenance period in the J-PARC linac. In the recent years, the local settlement continues in the upstream section of the straight line. A realignment of about 1.5 mm is carried out approximately every three years. To connect the coordinate system while securing its accuracy, the horizontal measurement is performed with moving the tracker at short intervals, then, it takes time for the precise survey. Therefore, it is desirable that a long-distance horizontal linearity can be monitored or measured in a short period of time. A stretched wire is tested as a horizontal reference to assist the tracker survey and to obtain the long-range straightness in the linac tunnel. The survey and alignment results in these years, and the initial results of the horizontal monitoring for tunnel linearity will be presented.
Kitamura, Ryo; Futatsukawa, Kenta*; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Kosaka, Satoshi*; Miyao, Tomoaki*; Nemoto, Yasuo*; Morishita, Takatoshi; Oguri, Hidetomo
Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.251 - 253, 2020/09
A bunch-shape monitor (BSM) in the low-energy region is being developed in the J-PARC linac to accelerate the high-intensity proton beam with the low emittance. A highly-oriented pyrolytic graphite (HOPG) was introduced as the target of the BSM to mitigate the thermal loading. The stable measurement of the BSM was realized thanks to the HOPG target, while the tungsten target was broken by the thermal loading from the high-intensity beam. However, since the longitudinal distribution measured with the BSM using the HOPG target was wider than the expected one, the improvement of tuning parameters is necessary for the BSM. The BSM consists of an electron multiplier, a bending magnet, and a radio-frequency deflector, which should be tuned appropriately. Behavior of these components were investigated and tuned. The longitudinal distribution measured with the BSM after the tuning was consistent with the expected one.
Sue, Yuki*; Yotsuzuka, Mai*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Inami, Kenji*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kitamura, Ryo; et al.
Physical Review Accelerators and Beams (Internet), 23(2), p.022804_1 - 022804_7, 2020/02
Times Cited Count:2 Percentile:20.86(Physics, Nuclear)A destructive monitor to measure the longitudinal bunch width of a low-energy and low-intensity muon beam was developed. This bunch-width monitor (BWM) employed microchannel plates to detect a single muon with high time resolution. In addition, constant-fraction discriminators were adopted to suppress the time-walk effect. The time resolution was measured to be 65 ps in rms using a picosecond-pulsed laser. This resolution satisfied the requirements of the muon linac of the J-PARC E34 experiment. We measured the bunch width of negative-muonium ions accelerated with a radio-frequency quadrupole using the BWM. The bunch width was successfully measured to be 54
11 ns, which is consistent with the simulation.
Otani, Masashi*; Futatsukawa, Kenta*; Mibe, Tsutomu*; Naito, Fujio*; Hasegawa, Kazuo; Ito, Takashi; Kitamura, Ryo; Kondo, Yasuhiro; Morishita, Takatoshi; Iinuma, Hiromi*; et al.
Journal of Physics; Conference Series, 1350, p.012097_1 - 012097_7, 2019/12
Times Cited Count:3 Percentile:78.54(Physics, Particles & Fields)A disk and washer (DAW) coupled cavity linac (CCL) has been developed for a middle velocity part in a muon linac to measure muon anomalous magnetic moment and search for electric dipole moment. I will accelerate muons from =
= 0.3 to 0.7 at an operational frequency of 1.3GHz. In this poster, the cavity design, beam dynamics design, and the cold-model measurements will be presented.
Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.
Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12
Times Cited Count:3 Percentile:78.54(Physics, Particles & Fields)Negative muonium atom (e
e
, Mu
) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu
were 10
/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu
averaged energy: it was 0.2
0.1keV.
Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.
Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12
Times Cited Count:2 Percentile:69.22(Physics, Particles & Fields)We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.