Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sakurai, Junya*; Torigata, Keisuke*; Matsunaga, Manabu*; Takanashi, Naoto*; Hibino, Shinya*; Kizu, Kenichi*; Morita, Akira*; Inomoto, Masahiro*; Shimohata, Nobuaki*; Toyota, Kodai; et al.
Tetsu To Hagane, 111(5), p.246 - 262, 2025/04
Morita, Keisuke; Aoki, Takeshi; Shimizu, Atsushi; Sato, Hiroyuki
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 6 Pages, 2024/11
Ishii, Katsunori; Morita, Keisuke; Noguchi, Hiroki; Aoki, Takeshi; Mizuta, Naoki; Hasegawa, Takeshi; Nagatsuka, Kentaro; Nomoto, Yasunobu; Shimizu, Atsushi; Iigaki, Kazuhiko; et al.
Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2023/09
Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05
Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; Noguchi, Hiroki; et al.
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05
Sano, Yuichi; Sakamoto, Atsushi; Miyazaki, Yasunori; Watanabe, So; Morita, Keisuke; Emori, Tatsuya; Ban, Yasutoshi; Arai, Tsuyoshi*; Nakatani, Kiyoharu*; Matsuura, Haruaki*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle; Sustainable Energy Beyond the Pandemic (GLOBAL 2022) (Internet), 4 Pages, 2022/07
We developed a hybrid MA(III) recovery process combining MA(III)+Ln(III) co-recovery flowsheet by solvent extraction with TBP and MA(III)/Ln(III) separation flowsheet by simulated moving bed chromatography using HONTA impregnated adsorbents with large particle size porous silica support.
Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Sasaki, Yuji; Morita, Keisuke; Matsumiya, Masahiko*; Ono, Ryoma*; Shiroishi, Hidenobu*
JOM, 73(4), p.1037 - 1043, 2021/04
Times Cited Count:4 Percentile:31.18(Materials Science, Multidisciplinary)The separation of Dy from Nd is studied from the viewpoint of recycling Dy from Nd magnets. Both metals are lanthanide elements, which means their mutual separation is difficult because of their similar chemical behaviors. All lanthanide elements can be extracted easily by using tetradodecyl-diglycolamide (TDdDGA) extractants, and it has a relatively high separation factor (SF) between Dy and Nd (SF over 10). In the present study, by performing eight extraction steps with the organic phase (0.1M TDdDGA in dodecane), ten steps with an aqueous phase (0.7 M HNO with metals), and six steps with another aqueous phase (0.7 M HNO
without metals), approximately 99% Dy was recovered into the organic phase with 1% co-extraction of Nd.
Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.
High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02
As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.
Sasaki, Yuji; Morita, Keisuke; Kitatsuji, Yoshihiro; Ito, Keisuke*; Yoshizuka, Kazuharu*
Solvent Extraction Research and Development, Japan, 28(2), p.121 - 131, 2021/00
Times Cited Count:2 Percentile:9.51(Chemistry, Multidisciplinary)High concentration of Cs is present in high-level radioactive waste. It is well-known that Cs is an alkali element and difficult to extract completely into an organic phase. Crown ether compounds are widely available for Cs extractants; DtBuDB18C6 (di--butyl-dibenzo-18crown6), was used in this study. Organic solvents used for the industrial applications, such as
-dodecane and 1-octanol, have low solubility concerning the compound; other solvents were employed and tested. In this study, ketone-, ether-, and ester-type solvents showed high solubility for DtBuDB18C6 and DtBuDB18C6, when dissolved in ketones and alcohols, exhibited relatively high Cs distribution ratios (
(Cs)), closely to 10.
Sasaki, Yuji; Morita, Keisuke; Matsumiya, Masahiko*; Nakase, Masahiko*
Radiochimica Acta, 108(9), p.689 - 699, 2020/09
Times Cited Count:9 Percentile:66.49(Chemistry, Inorganic & Nuclear)The simultaneous separation of Am and Cm from lanthanides is important for atomic energy fields. All lanthanides, Am, and Cm can be extracted by diglycolamide (DGA). In addition, relatively high separation factors between An and Ln were obtained by the extraction system of TODGA, DTPA (diethylenetriamine-pentaacetic acid) and HNO. In this work, DTPA-BA (diethylenetriamine-triacetic-bisamide), which is an improved version of DTPA, was employed for the separation of Ln and An. A relatively high separation factor (approximately 8) for actinides/lanthanides was obtained. Then, the multi-step extraction was performed. Thus, the recoveries of 94.7% for Nd and 4.7% for Am and Cm in organic phase, and 5.3% Nd and 95.3% for Am and Cm in aqueous phase were obtained.
Sasaki, Yuji; Ban, Yasutoshi; Morita, Keisuke; Matsumiya, Masahiko*; Ono, Ryoma*; Shiroishi, Hidenobu*
Solvent Extraction Research and Development, Japan, 27(1), p.63 - 67, 2020/00
Times Cited Count:6 Percentile:25.06(Chemistry, Multidisciplinary)Mutual separation technique of Dy and Nd in Nd magnet is studied. Dy is more valuable than Nd, then Dy might be isolated and reused. Lanthanide elements can be extracted thoroughly by diglycolamide (DGA) extractants, we use this reagent for the recovery and isolation of Dy. Tetradodecyl-DGA (TDdDGA) has relatively high separation factors(SF) between Dy and Nd (SF=17-18) in HNO extraction system, counter-current extraction using TDdDGA was applied for their mutual separation. From the present study, using the condition, four extraction stages, organic phase: 0.1M TDdDGA in n-dodecane, aqueous phase: 0.3M HNO
, 92% Dy can be recovered with 0.7% co-extraction of Nd.
Morita, Keisuke; Suzuki, Hideya; Matsumura, Tatsuro; Takahashi, Yuya*; Omori, Takashi*; Kaneko, Masaaki*; Asano, Kazuhito*
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.464 - 468, 2019/09
High level liquid waste (HLLW) contains several radionuclides with half-lives longer than 10 year. For reduce environmental burden of waste disposal, minor actinoids and long-lived fission products will to be partitioned and transmuted. JAEA and Toshiba developed process for recovering Se, Zr, Pd and Cs from HLLW. Solvent extraction for Zr with novel extractant,
-didodecyl-2-hydroxyacetoamide (HAA) was detailed. The HAA system showed high selectivity for Zr, as indicated by the extraction order of Zr
Mo
Pd
Ag
Sb
Sn
Lns
Fe. The extracted species was determined as Zr(HAA)
(NO
)
(HNO
)
. A continuous countercurrent extraction with HAA was applied to a simulated, concentrated HLLW after Pd, Se, and Cs removal, where the quantitative extraction of Zr and Mo was effectively demonstrated.
Sasaki, Yuji; Morita, Keisuke; Matsumiya, Masahiko*; Nakase, Masahiko*
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.108 - 112, 2019/09
We attempted to separate An from Ln, and Am and Cm by the system including extractant and masking agent. The separation factor of Nd and Am was approximately 10 by TODGA-DTPA-BA and that of Am and Cm was over 3 by TODGA-DOODA(C2). Using these batch data, profiles of metal concentration with multi-step extractions proposed in this manuscript were demonstrated.
Fukaya, Yuji; Nakagawa, Shigeaki; Goto, Minoru; Ishitsuka, Etsuo; Kawakami, Satoru; Uesaka, Takahiro; Morita, Keisuke; Sano, Tadafumi*
KURNS Progress Report 2018, P. 148, 2019/08
The Japan Atomic Energy Agency (JAEA) started the Research and Development (R&D) to improve nuclear prediction techniques for High Temperature Gas-cooled Reactors (HTGRs). The objectives are to introduce generalized bias factor method to avoid full mock-up experiment for the first commercial HTGR and to introduce reactor noise analysis to High Temperature Engineering Test Reactor (HTTR) experiment. To achieve the objectives, the reactor core of graphite moderation system named B7/4"G2/8"p8EUNU+3/8"p38EU(1) was newly composed in the B-rack of Kyoto University Critical Assembly (KUCA). The core plays a role of the reference core of the bias factor method, and the reactor noise was measured to develop the noise analysis scheme. In addition, training of operator of HTTR was also performed during the experiments.
Sasaki, Yuji; Morita, Keisuke
Progress in Nuclear Science and Technology (Internet), 5, p.27 - 32, 2018/12
no abstracts in English
Sasaki, Yuji; Morita, Keisuke; Saeki, Morihisa*; Hisamatsu, Shugo*; Yoshizuka, Kazuharu*
Proceedings of 21st International Solvent Extraction Conference (ISEC 2017) (Internet), p.131 - 134, 2017/11
Three tridentate extractants including soft and hard donor has been developed and examined. The extractants are termed as -tetraoctyl-diglycolamide (TODGA), methylimino-
-dioctylacetamide (MIDOA) and
-tetraoctyl-thiodiglycolamide (TDGA). The results of the present study show that TODGA can extract completely lanthanides and actinides, MIDOA can extract palladium, technetium, and rhenium, and TDGA can extract palladium, silver, and gold. We can compare the distribution ratios of these metals by TODGA, MIDOA, and TDGA. These results can be supported by some spectrometric studies, i.e., IR, NMR and UV, and calculations of metal complexes.
Sasaki, Yuji; Morita, Keisuke; Ito, Keisuke; Suzuki, Shinichi; Shiwaku, Hideaki; Takahashi, Yuya*; Kaneko, Masaaki*; Omori, Takashi*; Asano, Kazuhito*
Proceedings of International Nuclear Fuel Cycle Conference (GLOBAL 2017) (USB Flash Drive), 4 Pages, 2017/09
no abstracts in English
Sasaki, Yuji; Morita, Keisuke; Suzuki, Shinichi; Shiwaku, Hideaki; Ito, Keisuke; Takahashi, Yuya*; Kaneko, Masaaki*
Solvent Extraction Research and Development, Japan, 24(2), p.113 - 122, 2017/06
The solvent extraction of Se, Zr, Pd, and Cs from nitric acid into 1-octanol (OC) and dodecane has been performed. These elements include long-lived radionuclides in spent nuclear fuels, so a simple separation method is indispensable for the development of the treatment of high-level liquid radioactive waste. It was found that Se can be extracted using phenylenediamine, Zr can be extracted using tetraoctyl diglycolamide and di-2-ethylhexyl phosphoric acid, and Pd can be extracted using (methylimino)bis(dioctylacetamide) and hexaoctylnitrilotriacetamide. These elements can be recovered in over 90% yield by these extractants from nitric acid into OC. A distribution ratio of Cs of greater than 1 can be obtained using di-t-butyldibenzo-18-crown-6. It is clear that 90% recovery of Cs can be achieved using an extraction solvent with ten times the volume of the aqueous phase.
Sasaki, Yuji; Morita, Keisuke; Saeki, Morihisa*; Hisamatsu, Shugo; Yoshizuka, Kazuharu*
Hydrometallurgy, 169, p.576 - 584, 2017/05
Times Cited Count:16 Percentile:56.25(Metallurgy & Metallurgical Engineering)The novel tridentate extractant including soft donor has developed and examined. The extractant, tetraoctyl-thiodiglycolamide (TDGA), is analogous structure to tetraoctyl-diglycolamide (TODGA) and methylimino-dioctylacetamide (MIDOA), but with sulfur donor instead of ether oxygen or nitrogen atoms of TODGA or MIDOA. From the present work, TDGA can extract silver, palladium, gold, and mercury from acidic solutions to n-dodecane. In addition to these results, the distribution ratios of hard and soft acid metals by using TDGA, TODGA, and MIDOA are compared, where the metal-complexations with each donor atom are investigated. 1H-NMR and IR studies for the metal-TDGA complexes indicate the role on donor atoms, S and N, of TDGA.