Refine your search:     
Report No.
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Research and development on reduced-moderation light water reactor with passive safety features (Contract research)

Iwamura, Takamichi; Okubo, Tsutomu; Akie, Hiroshi; Kugo, Teruhiko; Yonomoto, Taisuke; Kureta, Masatoshi; Ishikawa, Nobuyuki; Nagaya, Yasunobu; Araya, Fumimasa; Okajima, Shigeaki; et al.

JAERI-Research 2004-008, 383 Pages, 2004/06


The present report contains the achievement of "Research and Development on Reduced-Moderation Light Water Reactor with Passive Safety Features", which was performed by Japan Atomic Energy Research Institute (JAERI), Hitachi Ltd., Japan Atomic Power Company and Tokyo Institute of Technology in FY2000-2002 as the innovative and viable nuclear energy technology (IVNET) development project operated by the Institute of Applied Energy (IAE). In the present project, the reduced-moderation water reactor (RMWR) has been developed to ensure sustainable energy supply and to solve the recent problems of nuclear power and nuclear fuel cycle, such as economical competitiveness, effective use of plutonium and reduction of spent fuel storage. The RMWR can attain the favorable characteristics such as high burnup, long operation cycle, multiple recycling of plutonium (Pu) and effective utilization of uranium resources based on accumulated LWR technologies.

Journal Articles

Design of small reduced-moderation water reactor

Okubo, Tsutomu; Iwamura, Takamichi; Takeda, Renzo*; Moriya, Kumiaki*; Yamauchi, Toyoaki*; Aritomi, Masanori*

Nippon Kikai Gakkai 2003-Nendo Nenji Taikai Koen Rombunshu, Vol.3, p.245 - 246, 2003/08

A design study on a 300MWe class small Reduced-Moderation Water Reactor (RMWR) has been performed, based on the experienced LWR technology. The core can be cooled by the natural circulation and can achieve a conversion ratio of 1.01, a negative void reactivity coefficient, a core average burn-up of 65 GWd/t and a cycle length of 25 months. The system has been simplified as much as possible by introducing the passive safety components, in order to reduce the construction cost per electric power output overcoming “the scale demerit" for a small reactor comparing with the large one. The results show a 1.35 times higher cost than for the ABWR case, but suggest the possible lower cost when the effects such as the mass production are taken into account.

Journal Articles

Design of small Reduced-Moderation Water Reactor (RMWR) with natural circulation cooling

Okubo, Tsutomu; Suzuki, Motoe; Iwamura, Takamichi; Takeda, Renzo*; Moriya, Kumiaki*; Kanno, Minoru*

Proceedings of International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR 2002) (CD-ROM), 10 Pages, 2002/10

A small scale around 300 MWe reduced-moderation water reactor (RMWR) concept has been developed. For the core, a BWR type core concept with the tight-lattice fuel rod arrangement and the high void fraction is adopted to attain a high conversion ratio over 1.0. The negative void reactivity coefficients are also required, and the very flat short core concept is adopted to make the natural circulation cooling (NC) possible. The core burn-up of 60 GWd/t and the operation cycle of 24 months are also attained. For the system, simplification of the system with the passive safety features is a basic approach to overcome the scale demerit as well as the NC. For example, the HPCF system is replaced with the passive accumulator system resulting in the expensive emergency DGs reduction. The cost evaluation for concerned NSSS components gives about 20% reduction. Since MOX fuels in the RMWR contains Pu around 30 wt% and is irradiated to a high burn-up, the fuel safety evaluation has been performed and the acceptable results have been obtained from the thermal feasibility point of view.

Journal Articles

Core and system design of Reduced-Moderation Water Reactor with passive safety features

Iwamura, Takamichi; Okubo, Tsutomu; Yonomoto, Taisuke; Takeda, Renzo*; Moriya, Kumiaki*; Kanno, Minoru*

Proceedings of International Congress on Advanced Nuclear Power Plants (ICAPP) (CD-ROM), 8 Pages, 2002/00

Research and developments of reduced-moderation water reactor (RMWR) have been performed. The RMWR can attain the favorable characteristics such as high burn-up, long operation cycle, multiple recycling of plutonium and effective utilization of uranium resources, based on the matured LWR technologies. MOX fuel assemblies in the tight-lattice fuel rod arrangement are used to reduce the moderation of neutron, and hence, to increase the conversion ratio. The conceptual design has been accomplished for the small 330MWe RMWR core with the discharge burn-up of 60GWd/t and the operation cycle of 24 months, under the natural circulation cooling of the core. A breeding ratio of 1.01 and the negative void reactivity coefficient are simultaneously realized in the design. In the plant system design, the passive safety features are intended to be utilized mainly to improve the economy. At present, a hybrid one under the combination of the passive and the active components, and a fully passive one are proposed. The former has been evaluated to reduce the cost for the reactor components.

4 (Records 1-4 displayed on this page)
  • 1