Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:5 Percentile:87.42(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Dependence of charge-exchange efficiency on cooling water temperature of a beam transport line

Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki

EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07

The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.63$$times$$10$$^{-5}$$ variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.08$$times$$10$$^{-5}$$. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.

Journal Articles

Directional control of spin-wave emission by spatially shaped light

Sato, Takuya*; Terui, Yuki*; Moriya, Rai*; Ivanov, B. A.*; Ando, Kazuya*; Saito, Eiji; Shimura, Tsutomu*; Kuroda, Kazuo*

Nature Photonics, 6(10), p.662 - 666, 2012/10

 Times Cited Count:208 Percentile:99.19(Optics)

In future spintronics it is anticipated that spin waves will function as unique information carriers that are free from Joule heating. Directional control of spin-wave emission has been desired for the realization of switching devices. Here, we propose a promising technique that makes use of a spatially shaped light pulse with circular polarization. Focusing this light pulse on a magnet generates spin waves via the inverse Faraday effect. Moreover, the wave number distribution of the spin waves is determined by the spatial intensity distribution of the light spot. We demonstrate the principle of this technique both theoretically and experimentally. We successfully control the direction of the energy flow by shaping the light spot into an ellipse, with its major axis parallel or perpendicular to the magnetic field.

Oral presentation

Identifying sizes and turnover times of rapidly-cycling soil organic carbon pools by thin-layered soil incubations and $$^{14}$$C measurements

Moriya, Koichi*; Koarashi, Jun; Atarashi-Andoh, Mariko; Moriizumi, Jun*; Yamazawa, Hiromi*; Hirai, Keizo*

no journal, , 

Soil organic carbon (SOC) decomposition is an important component of the global carbon cycle, because SOC is the largest carbon reservoir in terrestrial ecosystems and a small change in the CO$$_{2}$$ flux from SOC may lead to a large change in atmospheric CO$$_{2}$$ concentration. For the accurate estimation of SOC decomposition, it is important to identify sizes and turnover times of SOC pools. We tried to estimate three SOC pools (active, slow and resistant) with different mean residence times (MRTs) by a combination of soil incubation and $$^{14}$$C analysis. The active SOC held $$sim$$1% of the total SOC with MRTs of 1-3 weeks. The slow SOC accounted for 20-50% of the total with MRTs of 1 to 17 years. The active and slow SOC contributed greatly to the total CO$$_{2}$$ production, and the primary source shifted from the active to the slow one. Our result shows the importance of quantifying the dynamics of rapidly-cycling SOC pools to accurately predicting the response of soils to climate change.

Oral presentation

Seasonal and spatial variations in carbon isotopic ratios in CO$$_{2}$$ respired from a beech forest floor

Atarashi-Andoh, Mariko; Koarashi, Jun; Moriya, Koichi; Nakanishi, Takahiro; Ishizuka, Shigehiro*; Hirai, Keizo*

no journal, , 

no abstracts in English

Oral presentation

Estimation of the depth profiles of soil organic carbon degradability by using radiocarbon

Moriya, Koichi; Koarashi, Jun; Atarashi-Andoh, Mariko; Moriizumi, Jun*; Yamazawa, Hiromi*; Hirai, Keizo*

no journal, , 

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1