Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Araki, Shingo*; Iwamoto, Kaisei*; Akiba, Kazuto*; Kobayashi, Tatsuo*; Munakata, Koji*; Kaneko, Koji; Osakabe, Toyotaka
Physical Review B, 110(9), p.094420_1 - 094420_7, 2024/09
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)The -Mn phase exhibits a large anomalous Hall effect (AHE) in its pressure-induced weak ferromagnetic (WFM) state, despite its relatively small spontaneous magnetization of 0.02
/Mn. To understand the underlying mechanism behind this AHE, we performed single crystal neutron diffraction measurements at 2.0 GPa to determine the magnetic structure of the WFM phase. Our investigation reveals a ferrimagnetic structure characterized by nearly collinear magnetic moments aligned along the [001] direction at sites I, II, III-1, and IV-1. In contrast, the small moments at sites III-2 and IV-2 lie within the (001) plane. The calculated net magnetization of this magnetic structure, (-0.020
0.005)
/Mn atom, is in excellent agreement with the experimentally determined spontaneous magnetization. The observation of a magnetic reflection at
= (0, 0, 0) satisfies a key condition for the emergence of the AHE.
Ji, T.*; Su, S.*; Wu, S.*; Hori, Yuta*; Shigeta, Yasuteru*; Huang, Y.*; Zheng, W.*; Xu, W.*; Zhang, X.*; Kiyanagi, Ryoji; et al.
Angewandte Chemie; International Edition, 63(25), p.e202404843_1 - e202404843_6, 2024/04
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Yamashita, Keishiro*; Nakayama, Kazuya*; Komatsu, Kazuki*; Ohara, Takashi; Munakata, Koji*; Hattori, Takanori; Sano, Asami; Kagi, Hiroyuki*
Acta Crystallographica Section B; Structural Science, Crystal Engineering and Materials (Internet), 79(5), p.414 - 426, 2023/10
Times Cited Count:2 Percentile:47.77(Chemistry, Multidisciplinary)The structure of a recently-found hyperhydrated form of sodium chloride, NaCl 13H(D)
O, has been determined by
single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. Here, we present an example for further insights into a hydrogen-bond network containing ionic species.
Nakanishi, Takumi*; Hori, Yuta*; Shigeta, Yasuteru*; Sato, Hiroyasu*; Kiyanagi, Ryoji; Munakata, Koji*; Ohara, Takashi; Okazawa, Atsushi*; Shimada, Rintaro*; Sakamoto, Akira*; et al.
Journal of the American Chemical Society, 145(35), p.19177 - 19181, 2023/08
Times Cited Count:4 Percentile:48.20(Chemistry, Multidisciplinary)Kozawa, Tatsuya*; Fujihara, Masayoshi; Uchihara, Takeru*; Mitsuda, Setsuo*; Yano, Shinichiro*; Tamatsukuri, Hiromu; Munakata, Koji*; Nakao, Akiko*
Scientific Reports (Internet), 13, p.13750_1 - 13750_8, 2023/08
Times Cited Count:1 Percentile:13.24(Multidisciplinary Sciences)In condensed matter physics, pressure is frequently used to modify the stability of both electronic states and atomic arrangements. Under isotropic pressure, the intermetallic compound MnP has recently attracted attention for the interplay between pressure-induced superconductivity and complicated magnetic order in the vicinity. By contrast, we use uniaxial stress, a directional type of pressure, to investigate the effect on the magnetism and crystal structure of this compound. An irreversible magnetisation response induced by uniaxial stress is discovered in MnP at uniaxial stress as low as 0.04 GPa. Neutron diffraction experiments reveal that uniaxial stress forms crystal domains that satisfy pseudo-rotational symmetry unique to the MnP-type structure. The structure of the coexisting domains accounts for the stress-induced magnetism. We term this first discovered phenomenon atomic reconstruction (AR) induced by uniaxial stress. Furthermore, our calculation results provide guidelines on the search for AR candidates. AR allows crystal domain engineering to control anisotropic properties of materials, including dielectricity, elasticity, electrical conduction, magnetism and superconductivity. A wide-ranging exploration of potential AR candidates would ensure that crystal domain engineering yields unconventional methods to design functional multi-domain materials for a wide variety of purposes.
Nakanishi, Takumi*; Hori, Yuta*; Shigeta, Yasuteru*; Sato, Hiroyasu*; Wu, S.-Q.*; Kiyanagi, Ryoji; Munakata, Koji*; Ohara, Takashi; Sato, Osamu*
Physical Chemistry Chemical Physics, 25(17), p.12394 - 12400, 2023/05
Times Cited Count:3 Percentile:47.14(Chemistry, Physical)Yamashita, Keishiro*; Komatsu, Kazuki*; Ohara, Takashi; Munakata, Koji*; Irifune, Tetsuo*; Shimmei, Toru*; Sugiyama, Kazumasa*; Kawamata, Toru*; Kagi, Hiroyuki*
High Pressure Research, 42(1), p.121 - 135, 2022/03
Times Cited Count:4 Percentile:49.55(Physics, Multidisciplinary)Kaneko, Koji; Kawasaki, Takuro; Nakamura, Ai*; Munakata, Koji*; Nakao, Akiko*; Hanashima, Takayasu*; Kiyanagi, Ryoji; Ohara, Takashi; Hedo, Masato*; Nakama, Takao*; et al.
Journal of the Physical Society of Japan, 90(6), p.064704_1 - 064704_6, 2021/06
Times Cited Count:49 Percentile:95.21(Physics, Multidisciplinary)Yajima, Takeshi*; Hinuma, Yoyo*; Hori, Satoshi*; Iwasaki, Rui*; Kanno, Ryoji*; Ohara, Takashi; Nakao, Akiko*; Munakata, Koji*; Hiroi, Zenji*
Journal of Materials Chemistry A, 9(18), p.11278 - 11284, 2021/05
Times Cited Count:29 Percentile:82.80(Chemistry, Physical)Iida, Kazuki*; Yoshida, Hiroyuki*; Nakao, Akiko*; Jeschke, H. O.*; Iqbal, Y.*; Nakajima, Kenji; Kawamura, Seiko; Munakata, Koji*; Inamura, Yasuhiro; Murai, Naoki; et al.
Physical Review B, 101(22), p.220408_1 - 220408_6, 2020/06
Times Cited Count:26 Percentile:79.23(Materials Science, Multidisciplinary)Crystal and magnetic structures of the mineral centennialite CaCu(OD)
Cl
0.6D
O are investigated by means of synchrotron X-ray diffraction and neutron diffraction measurements complemented by density functional theory (DFT) and pseudofermion functional renormalization group (PFFRG) calculations. In CaCu
(OD)
Cl
0.6D
O, Cu
ions form a geometrically perfect kagome network with antiferromagnetic
. No intersite disorder between Cu
and Ca
ions is detected. CaCu
(OD)
Cl
0.6D
O enters a magnetic long-range ordered state below
= 7.2 K, and the
=0 magnetic structure with negative vector spin chirality is obtained. The ordered moment at 0.3 K is suppressed to 0.58(2)
B. Our DFT calculations indicate the presence of antiferromagnetic
and ferromagnetic
superexchange couplings of a strength which places the system at the crossroads of three magnetic orders (at the classical level) and a spin-
PFFRG analysis shows a dominance of
=0 type magnetic correlations, consistent with and indicating proximity to the observed
=0 spin structure. The results suggest that this material is located close to a quantum critical point and is a good realization of a
-
-
kagome antiferromagnet.
Nakazato, Seiya*; Iwasa, Kazuaki*; Hashimoto, Daisuke*; Shiozawa, Mami*; Kuwahara, Keitaro*; Nakao, Hironori*; Sagayama, Hajime*; Ishikado, Motoyuki*; Ohara, Takashi; Nakao, Akiko*; et al.
JPS Conference Proceedings (Internet), 30, p.011128_1 - 011128_6, 2020/03
Komabuchi, Mai*; Urushihara, Daisuke*; Asaka, Toru*; Fukuda, Koichiro*; Ohara, Takashi; Munakata, Koji*; Ishikawa, Yoshihisa*
Journal of the Physical Society of Japan, 89(3), p.034601_1 - 034601_5, 2020/03
Times Cited Count:2 Percentile:18.41(Physics, Multidisciplinary)Ikeda, Shugo*; Kaneko, Koji; Tanaka, Yuki*; Kawasaki, Takuro; Hanashima, Takayasu*; Munakata, Koji*; Nakao, Akiko*; Kiyanagi, Ryoji; Ohara, Takashi; Mochizuki, Kensei*; et al.
Journal of the Physical Society of Japan, 89(1), p.014707_1 - 014707_7, 2020/01
Times Cited Count:2 Percentile:18.41(Physics, Multidisciplinary)Iida, Kazuki*; Nagai, Yuki; Ishida, Shigeyuki*; Ishikado, Motoyuki*; Murai, Naoki; Christianson, A. D.*; Yoshida, Hiroyuki*; Inamura, Yasuhiro; Nakamura, Hiroki; Nakao, Akiko*; et al.
Physical Review B, 100(1), p.014506_1 - 014506_8, 2019/07
Times Cited Count:39 Percentile:84.23(Materials Science, Multidisciplinary)Magnetic excitations and magnetic structure of EuRbFeAs
were investigated by neutron scattering measurements.
Kaneko, Koji; Frontzek, M. D.*; Matsuda, Masaaki*; Nakao, Akiko*; Munakata, Koji*; Ohara, Takashi; Kakihana, Masashi*; Haga, Yoshinori; Hedo, Masato*; Nakama, Takao*; et al.
Journal of the Physical Society of Japan, 88, p.013702_1 - 013702_5, 2019/01
Times Cited Count:72 Percentile:94.53(Physics, Multidisciplinary)Shamoto, Shinichi; Ito, Takashi; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato*; Akatsu, Mitsuhiro*; Kodama, Katsuaki; Nakao, Akiko*; Moyoshi, Taketo*; et al.
Physical Review B, 97(5), p.054429_1 - 054429_9, 2018/02
Times Cited Count:21 Percentile:65.92(Materials Science, Multidisciplinary)Nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet YFe
O
have been studied by neutron scattering. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of
-integrated dynamical spin susceptibility
"(
) exhibits a square-root energy-dependence in the low energies. The magnon density of state is estimated from the
"(
) obtained on an absolute scale. The value is consistent with a single chirality mode for the magnon branch expected theoretically.
Kawamura, Seiko; Oku, Takayuki; Watanabe, Masao; Takahashi, Ryuta; Munakata, Koji*; Takata, Shinichi; Sakaguchi, Yoshifumi*; Ishikado, Motoyuki*; Ouchi, Keiichi*; Hattori, Takanori; et al.
Journal of Neutron Research, 19(1-2), p.15 - 22, 2017/11
Sample environment (SE) team at the Materials and Life Science Experimental Facility (MLF) in J-PARC has worked on development and operation of SE equipment and devices. All the members belong to one sub-team at least, such as Cryogenic and magnet, High temperature, High pressure, Soft matter and special environment including Pulse magnet, Hydrogen environment, Light irradiation and He spin filter. Cryostats, a magnet, furnaces, a VX-6-type Paris-Edinburgh press and a prototype of a Spin-Exchange Optical Pumping (SEOP) based
He spin filter for polarized neutron beam experiments are in operation. Furthermore, a prototype of compact power supply for a pulsed magnet system is currently developed. In the J-PARC Research Building, several pieces of equipment for softmatter research such as a rheometer and a gas and vapor adsorption measurement instrument have been prepared.
Kawasaki, Takuro; Kaneko, Koji; Nakamura, Ai*; Aso, Naofumi*; Hedo, Masato*; Nakama, Takao*; Ohara, Takashi; Kiyanagi, Ryoji; Oikawa, Kenichi; Tamura, Itaru; et al.
Journal of the Physical Society of Japan, 85(11), p.114711_1 - 114711_5, 2016/11
Times Cited Count:15 Percentile:65.75(Physics, Multidisciplinary)Ohara, Takashi; Kiyanagi, Ryoji; Oikawa, Kenichi; Kaneko, Koji; Kawasaki, Takuro; Tamura, Itaru; Nakao, Akiko*; Hanashima, Takayasu*; Munakata, Koji*; Moyoshi, Taketo*; et al.
Journal of Applied Crystallography, 49(1), p.120 - 127, 2016/02
Times Cited Count:58 Percentile:95.95(Chemistry, Multidisciplinary)Ikeda, Yoichi*; Ueta, Daichi*; Yoshizawa, Hideki*; Nakao, Akiko*; Munakata, Koji*; Ohara, Takashi
Journal of the Physical Society of Japan, 84(12), p.123701_1 - 123701_5, 2015/12
Times Cited Count:6 Percentile:43.54(Physics, Multidisciplinary)Single-crystal neutron diffraction study was performed for anomalous antiferromagnetic ordering in a heavy-electron superconductor CeNiGe. We observed incommensurate magnetic Bragg reflections characterized with the propagation vector of
= (0; 0:41; 1=2) below the N
el temperature of 5 K, while there is no significant magnetic reflection at the commensurate propagation vector of
= (1; 0; 0) at which another magnetic reflection was observed in the previous neutron diffraction study with a polycrystalline sample. From the single crystal study, we suggest that the magnetic phase of CeNiGe
at ambient pressure is characterized only by the incommensurate propagation vector
.