Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03
The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.
Wakasa, Arimitsu*; Fukuyama, Atsushi*; Murakami, Sadayoshi*; Miki, Masayuki*; Yokoyama, Masayuki*; Sato, Masahiko*; Toda, Shinichiro*; Funaba, Hisamichi*; Tanaka, Kenji*; Ida, Katsumi*; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Tanaka, Kenji*; Kawahata, Kazuo*; Tokuzawa, Tokihiko*; Akiyama, Tsuyoshi*; Yokoyama, Masayuki*; Shoji, Mamoru*; Michael, C. A.*; Vyacheslavov, L. N.*; Murakami, Sadayoshi*; Wakasa, Arimitsu*; et al.
Fusion Science and Technology, 58(1), p.70 - 90, 2010/07
Times Cited Count:22 Percentile:81.49(Nuclear Science & Technology)Particle confinement processes were studied in detail on LHD. Diffusion coefficients (D) and convection velocities (V) were estimated from density modulation experiments. The magnetic configuration and collisionality were widely scanned in order to investigate parameter dependences of D and V. In order to study the effect of the magnetic configuration, magnetic axis positions (R) were scanned from 3.5 m to 3.9 m. This scan changed the magnetic ripples quite significantly, enabling the effects of neoclassical properties on measured values to be widely elucidated. Dependences of electron temperature (T
) and helically trapped normalized collsionality (
), where
=1 indicates a rough boundary between the 1/
and plateau regimes, were examined using the heating power scan of neutral beam injection (NBI). It was found out that generally larger (or smaller) contributions of neoclassical transport resulted in more hollow (or peaked) density profiles. The larger neoclassical contribution was found to be situated at a more outwardly shifted R
for the same T
, and higher T
or lower
at each R
. However, it is to be noted that R
=3.5 m showed different characteristics from these trends in that this case showed a more peaked density profile at higher T
.
Isayama, Akihiko; Sakakibara, Satoru*; Furukawa, Masaru*; Matsunaga, Go; Yamazaki, Kozo*; Watanabe, Kiyomasa*; Idomura, Yasuhiro; Sakamoto, Yoshiteru; Tanaka, Kenji*; Tamura, Naoki*; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 86(6), p.374 - 377, 2010/06
no abstracts in English
Osakabe, Masaki*; Shinohara, Koji; Toi, Kazuo*; Todo, Yasushi*; Hamamatsu, Kiyotaka; Murakami, Sadayoshi*; Yamamoto, Satoshi*; Idomura, Yasuhiro; Sakamoto, Yoshiteru; Tanaka, Kenji*; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 85(12), p.839 - 842, 2009/12
no abstracts in English
Fukuyama, Atsushi*; Maekawa, Takashi*; Hamamatsu, Kiyotaka; Murakami, Sadayoshi*
Purazuma, Kaku Yugo Gakkai-Shi, 85(6), p.339 - 350, 2009/06
no abstracts in English
Idomura, Yasuhiro; Yoshida, Maiko; Yagi, Masatoshi*; Tanaka, Kenji*; Hayashi, Nobuhiko; Sakamoto, Yoshiteru; Tamura, Naoki*; Oyama, Naoyuki; Urano, Hajime; Aiba, Nobuyuki; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 84(12), p.952 - 955, 2008/12
no abstracts in English
Tanaka, Kenji*; Takenaga, Hidenobu; Muraoka, Katsunori*; Michael, C.*; Vyacheslavov, L. N.*; Yokoyama, Masayuki*; Yamada, Hiroshi*; Oyama, Naoyuki; Urano, Hajime; Kamada, Yutaka; et al.
Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10
Comparative studies were carried out in LHD heliotron and JT-60U tokamak plasmas to elucidate the most essential parameter(s) for control of density profiles in toroidal systems. A difference in the collisionality dependence was found between the two devices. In LHD, the density peaking factor decreased with decrease of the collisionality at the magnetic axis position (R) 3.6 m, while the density peaking factor gradually increased with a decreased of collisionality at R
= 3.5 m. On the other hand, in JT-60U, the density peaking factor clearly increased with a decrease of the collisionality. The difference in the collisionality dependence between R
= 3.5 and R
= 3.6 m is likely due to the contribution of the anomalous transport. At R
= 3.5 m, larger anomalous transport caused a similar collisionality dependence. Change of the fluctuation property was observed with different density profiles in the plasma core region on both devices. In JT-60U, the increase of the radial coherence was observed with higher density peaking profile suggesting enhanced diffusion and inward directed pinch. For a magnetic axis positions (R
) at 3.6 m in LHD, the increase of the fluctuation power with an increase in P
was observed for a hollow density profile suggesting an increase on diffusion due to anomalous processes. Change of density profiles from peaked to hollow indicates change in the convection direction. This is due to increase in neoclassical processes. The reduction of the density peaking factor with increase of P
in LHD is partly due to the neoclassical effect and partly due to the anomalous effect.
Tanaka, Kenji*; Michael, C.*; Vyacheslavov, L. N.*; Yokoyama, Masayuki*; Murakami, Sadayoshi*; Wakasa, Arimitsu*; Takenaga, Hidenobu; Muraoka, Katsunori*; Kawahata, Kazuo*; Tokuzawa, Tokihiko*; et al.
Plasma and Fusion Research (Internet), 3, p.S1069_1 - S1069_7, 2008/08
Density profiles in LHD were measured and particle transport coefficients were estimated from density modulation experiments in LHD. The dataset of different magnetic axis, toroidal magnetic filed and heating power provided data set of widely scanned neoclassical transport. At minimized neoclassical transport configuration ( = 3.5 m,
= 2.8 T) showed peaked density profile. Its peaking factor increased gradually with decrease of collisional frequency. This is a similar result observed in JT-60U. At other configuration, peaking factor reduced with decrease of collsional frequency. Data set showed that larger contribution of neoclassical transport produced hollowed density profile. Comparison between neoclassical and estimated particle diffusivity showed different minimum condition. Clear difference of spatial profile of turbulence was observed between hollowed and peaked density profiles. Major part of fluctuation existed in the unstable region of ion temperature gradient mode.
Motojima, Osamu*; Yamada, Hiroshi*; Komori, Akio*; Oyabu, Nobuyoshi*; Muto, Takashi*; Kaneko, Osamu*; Kawahata, Kazuo*; Mito, Toshiyuki*; Ida, Katsumi*; Imagawa, Shinsaku*; et al.
Nuclear Fusion, 47(10), p.S668 - S676, 2007/10
Times Cited Count:34 Percentile:74.68(Physics, Fluids & Plasmas)The performance of net-current free heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fuelling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an internal diffusion barrier (IDB) by a combination of efficient pumping of the local island divertor function and core fuelling by pellet injection has realized a super dense core as high as 510
m
, which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5% and a discharge duration of 54 min with a total input energy of 1.6 GJ (490 kW on average) are also highlighted. The progress of LHD experiments in these two years is overviewed by highlighting IDB, high-beta and long pulse.
Motojima, Osamu*; Yamada, Hiroshi*; Komori, Akio*; Oyabu, Nobuyoshi*; Kaneko, Osamu*; Kawahata, Kazuo*; Mito, Toshiyuki*; Muto, Takashi*; Ida, Katsumi*; Imagawa, Shinsaku*; et al.
Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 12 Pages, 2007/03
The performance of net-current free Heliotron plasmas has been developed by findings of innovative operational scenarios in conjunction with an upgrade of the heating power and the pumping/fueling capability in the Large Helical Device (LHD). Consequently, the operational regime has been extended, in particular, with regard to high density, long pulse length and high beta. Diversified studies in LHD have elucidated the advantages of net-current free heliotron plasmas. In particular, an Internal Diffusion Barrier (IDB) by combination of efficient pumping of the local island divertor function and core fueling by pellet injection has realized a super dense core as high as 510
m
, which stimulates an attractive super dense core reactor. Achievements of a volume averaged beta of 4.5 % and a discharge duration of 54-min. with a total input energy of 1.6 GJ (490 kW in average) are also highlighted. The progress of LHD experiments in these two years is overviewed with highlighting IDB, high
and long pulse.
Isobe, Mitsutaka*; Toi, Kazuo*; Matsushita, Hiroyuki*; Goto, Kazuyuki*; Suzuki, Chihiro*; Nagaoka, Kenichi*; Nakajima, Noriyoshi*; Yamamoto, Satoshi*; Murakami, Sadayoshi*; Shimizu, Akihiro*; et al.
Nuclear Fusion, 46(10), p.S918 - S925, 2006/10
Times Cited Count:29 Percentile:69.29(Physics, Fluids & Plasmas)no abstracts in English
Ida, Katsumi*; Fujita, Takaaki; Fukuda, Takeshi*; Sakamoto, Yoshiteru; Ide, Shunsuke; Toi, Kazuo*; Inagaki, Shigeru*; Shimozuma, Takashi*; Kubo, Shin*; Idei, Hiroshi*; et al.
Plasma Physics and Controlled Fusion, 46(5A), p.A45 - A50, 2004/05
Times Cited Count:19 Percentile:54.2(Physics, Fluids & Plasmas)no abstracts in English
Okamoto, Masao*; Hamamatsu, Kiyotaka; Murakami, Sadayoshi*; Nakajima, Noriyoshi*
Purazuma, Kaku Yugo Gakkai-Shi, 77(6), p.536 - 546, 2001/06
no abstracts in English
Tanaka, Kenji*; Takenaga, Hidenobu; Muraoka, Katsunori*; Urano, Hajime; Michael, C.*; Vyacheslavov, L. N.*; Yokoyama, Masayuki*; Yamagishi, Osamu*; Murakami, Sadayoshi*; Wakasa, Arimitsu*; et al.
no journal, ,
In order to understand particle transport systematically in toroidal plasmas, a density profile was compared in LHD helical and JT-60U tokamak plasmas. In large tokamak devices such as JT-60U, the density profile is always peaked and the peaked density profile can be explained based on outward diffusion flux and inward convection flux driven by microinstability. A peaking factor of the density profile was increased with decreasing collisionality. On the other hand, the density profile was changed from peaked one to hollow one depending on discharge conditions in LHD. The hollow density profile can be explained based on outward convection flux driven by neoclassical transport and inward diffusion flux driven by microinstability. In the configuration with a small helical ripple, where the neoclassical transport is reduced, the density profile tended to be peaked and dependence of the peaking factor on the collisionality was similar to that in tokamak plasmas. These results indicated that magnetic field ripple and microinstability are some of the main mechanisms determining the density profile.
Tanaka, Kenji*; Takenaga, Hidenobu; Muraoka, Katsunori*; Michael, C.*; Vyacheslavov, L. N.*; Yokoyama, Masayuki*; Yamada, Hiroshi*; Murakami, Sadayoshi*; Wakasa, Arimitsu*; Kawahata, Kazuo*; et al.
no journal, ,
In order to understand mechanisms for determining density profiles in toroidal plasmas, density profiles were compared in JT-60U tokamak and LHD helical plasmas. Transport theory indicates that neoclassical transport is enhanced in helical plasmas with low collisionality due to helical ripple. In JT-60U plasmas, density peaking increased with decreasing the collisionality. In LHD plasmas for magnetic axis (Rax) of 3.5m with small effective helical ripple, density peaking slightly increased with decreasing the collisionality as similar to that in tokamak plasmas. On the other hand, in LHD plasmas for Rax3.6m with relatively large effective helical ripple, density profile became hollow as the collisionality decreased. Different turbulence structures are observed for Rax=3.5m and Rax=3.6m in LHD plasmas. Turbulence propagated towards electron diamagnetic direction for Rax=3.5m and towards ion diamagnetic direction for Rax=3.6m. This difference could be related to the difference of density profiles, as well as difference of neoclassical transport. Furthermore, when density decreased in the core region due to increase of electron temperature, it was found that turbulence was first modified in the edge region and then in the core region.
Tanaka, Kenji*; Takenaga, Hidenobu; Muraoka, Katsunori*; Michael, C.*; Vyacheslavov, L. N.*; Mishchenko, A.*; Yokoyama, Masayuki*; Yamada, Hiroshi*; Oyama, Naoyuki; Urano, Hajime; et al.
no journal, ,
Comparative studies were carried out in LHD heliotron and JT-60U tokamak plasmas to elucidate effects of turbulence transport on density profiles in toroidal systems. A difference in the collisionality dependence was found between the two devices. In LHD, the density peaking factor decreased with decrease of the collisionality at the magnetic axis position (R) of 3.6 m. On the other hand, in JT-60U, the density peaking factor clearly increased with a decrease of the collisionality. For R
=3.6 m in LHD, the increase of the fluctuation power with an increase in P
was observed for a hollow density profile suggesting an increase on diffusion due to anomalous processes. In JT-60U, the increase of the radial coherence was observed with higher density peaking profile suggesting enhanced diffusion and inward directed pinch. The effects of curvature pinch on density profiles were also investigated in both devices. The curvature pinch produces a peaked density profile in JT-60U and a hollow density profile in LHD depending on their magnetic shear. However, these effects were too small to explain the density profiles observed in both devices.