Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nishina, Masahiro; Takeuchi, Kentaro; Murakami, Shinichi
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Sustainable Clean Energy for the Future (FR22) (Internet), 8 Pages, 2022/04
no abstracts in English
Takeuchi, Ryuji; Onoe, Hironori; Murakami, Hiroaki; Watanabe, Yusuke; Mikake, Shinichiro; Ikeda, Koki; Iyatomi, Yosuke; Nishio, Kazuhisa*; Sasao, Eiji
JAEA-Review 2021-003, 63 Pages, 2021/06
The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of JAEA reformation in FY2014, JAEA identified three remaining important issues on the geoscientific research program based on the synthesized latest results of research and development (R&D): "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technologies". At the MIU, the R&D are being pursued with a focus on the remaining important issues from FY2015, and satisfactory results have been achieved. Based on this situation, the R&D on the MIU Project were completed at the end of FY2019. In this report, the results of R&D and construction activities of the MIU Project in FY2019 are summarized.
Katsuta, Nagayoshi*; Takano, Masao*; Sano, Naomi; Tani, Yukinori*; Ochiai, Shinya*; Naito, Sayuri*; Murakami, Takuma*; Niwa, Masakazu; Kawakami, Shinichi*
Sedimentology, 66(6), p.2490 - 2510, 2019/10
Times Cited Count:8 Percentile:53.11(Geology)Micro-X-ray fluorescence (XRF) scanning spectroscopy of marine and lake sedimentary sequences can provide detailed paleoenvironmental records available through element intensities proxy data. However, problems for effects of interstitial pore water on the micro-XRF intensities have been pointed out so far because of direct measurement on the split wet sediment surfaces. In this study, new methods for the XRF corrections were developed by being considered with the micro-X-ray scanning spectroscopy.
Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09
After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.
Katsuta, Nagayoshi*; Ikeda, Hisashi*; Shibata, Kenji*; Kokubu, Yoko; Murakami, Takuma*; Tani, Yukinori*; Takano, Masao*; Nakamura, Toshio*; Tanaka, Atsushi*; Naito, Sayuri*; et al.
Global and Planetary Change, 164, p.11 - 26, 2018/05
Times Cited Count:11 Percentile:42.16(Geography, Physical)Paleoenvironmental and paleoclimate changes in Siberia were reconstructed by continuous, high-resolution records of chemical compositions from a sediment core retrieved from the Buguldeika Saddle, Lake Baikal, dating back to the last 33 cal. ka BP. The Holocene climate followed by a shift at ca. 6.5 cal. ka BP toward warm and dry, suggesting that the climate system transition from the glacial to interglacial state occurred. In the last glacial period, the deposition of carbonate mud from the Primorsky Range was associated with Heinrich events (H3 and H1) and the Selenga River inflow was caused by meltwater of mountain glaciers in the Khamar-Daban Range. The anoxic bottom-water during Allerod-Younger Dryas was probably a result of weakened ventilation associated with reduced Selenga River inflow and microbial decomposition of organic matters from the Primorsky Range. The rapid decline in precipitation during the early Holocene may have been a response to the 8.2 ka cooling event.
Tanaka, Taiki*; Narikiyo, Yoshihiro*; Morita, Kosuke*; Fujita, Kunihiro*; Kaji, Daiya*; Morimoto, Koji*; Yamaki, Sayaka*; Wakabayashi, Yasuo*; Tanaka, Kengo*; Takeyama, Mirei*; et al.
Journal of the Physical Society of Japan, 87(1), p.014201_1 - 014201_9, 2018/01
Times Cited Count:21 Percentile:74.79(Physics, Multidisciplinary)Excitation functions of quasielastic scattering cross sections for the Ca +
Pb,
Ti +
Pb, and
Ca +
Cm reactions were successfully measured by using the gas-filled recoil-ion separator GARIS. Fusion barrier distributions were extracted from these data, and compared with the coupled-channels calculations. It was found that the peak energies of the barrier distributions for the
Ca +
Pb and
Ti +
Pb systems coincide with those of the 2n evaporation channel cross sections for the systems, while that of the
Ca +
Cm is located slightly below the 4n evaporation ones. This results provide us helpful information to predict the optimum beam energy to synthesize superheavy nuclei.
Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03
The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.
Kaji, Daiya*; Morimoto, Koji*; Wakabayashi, Yasuo*; Takeyama, Mirei*; Yamaki, Sayaka*; Tanaka, Kengo*; Haba, Hiromitsu*; Huang, M.*; Murakami, Masashi*; Kanaya, Jumpei*; et al.
JPS Conference Proceedings (Internet), 6, p.030107_1 - 030107_4, 2015/06
Performance of the new gas-filled recoil ion separator GARIS-II was investigated using asymmetric Ne-induced fusion reactions. The use of He-H
mixture gas for the gas-filled magnet significantly reduced background scattered particles detected at the focal-plane Si detector, and increased a transmission of the asymmetric reaction products. A target-identification system was newly installed for efficient measurements of excitation functions without changing beam energy nor target.
Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.
JAEA-Review 2014-038, 137 Pages, 2014/12
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Kawamoto, Koji; Murakami, Hiroaki; Ishibashi, Masayuki; Sasao, Eiji; Watanabe, Kazuhiko; Mikake, Shinichiro; Ikeda, Koki
JAEA-Data/Code 2014-014, 27 Pages, 2014/08
This document presents the data of geological investigations at the -500m stage of the MIU from the 2011 fiscal year to the 2013 fiscal year. At the -500m stage of the MIU, although the Cretaceous Toki granite is distributed, pegmatite, aplite and lampropyre dike are distributed partially.
Asai, Shinichiro*; Okazaki, Ryuji*; Terasaki, Ichiro*; Yasui, Yukio*; Kobayashi, Wataru*; Nakao, Akiko*; Kobayashi, Kensuke*; Kumai, Reiji*; Nakao, Hironori*; Murakami, Yoichi*; et al.
Journal of the Physical Society of Japan, 82(11), p.114606_1 - 114606_6, 2013/11
Times Cited Count:6 Percentile:42.41(Physics, Multidisciplinary)Neutron and synchrotron X-ray diffraction for LaCo Rh
O
have been carried out in order to investigate the structural properties related with the spin state of Co
ions. We have found that the values of the Co(Rh)-O bond lengths in the Co(Rh)O
octahedron of LaCo
Rh
O
are nearly identical at 10 K. The lattice volume for the Rh
substituted samples decreases with the thermal expansion coefficient similar to that of LaCoO
from room temperature, and ceases to decrease around 70 K. These experimental results favor a mixed state consisting of the high-spin state and low-spin state Co
ions, and suggest that the high-spin state Co
ions are thermally excited in addition to those pinned by the substituted Rh
ions.
Nakayoshi, Akira; Kitawaki, Shinichi; Fukushima, Mineo; Murakami, Tsuyoshi*; Kurata, Masaki
Journal of Nuclear Materials, 441(1-3), p.468 - 472, 2013/10
Times Cited Count:15 Percentile:70.08(Materials Science, Multidisciplinary)Electrorefining is one of the main steps of pyroreprocessing where spent nuclear fuels are recycled. Electrorefining is conducted in a molten salt of LiCl-KCl eutectic (59:41 mol%) containing actinide chlorides (AnCl) at 773 K. In order to operate and maintain the electrorefiner, it is necessary to accumulate fundamental data on LiCl-KCl-AnCl
salt such as the melting point. In this study, based on X-ray diffraction and differential thermal analysis, a partial phase diagram of (LiCl-KCl)eut.-UCl
pseudo-binary system and partial phase diagram of LiCl-KCl-UCl
system were developed, which UCl
concentration was up to 20 mol%.
Murakami, Masashi*; Goto, Shinichi*; Murayama, Hirofumi*; Kojima, Takayuki*; Kudo, Hisaaki*; Kaji, Daiya*; Morimoto, Koji*; Haba, Hiromitsu*; Kudo, Yuki*; Sumita, Takayuki*; et al.
Physical Review C, 88(2), p.024618_1 - 024618_8, 2013/08
Times Cited Count:17 Percentile:70.39(Physics, Nuclear)Production cross sections of Rf isotopes in the Cm +
O reaction were measured at the beam energy range of 88.2 to 101.3 MeV by use of a gas-filled recoil ion separator. The excitation functions of
Rf,
Rf, and
Rf were obtained together with those of spontaneously fissioning nuclides which have few-second half-lives and have been assigned to
Rf and a longer-lived state of
Rf. The excitation function of few-second spontaneously fissioning nuclide exhibited the maximum cross section at the
O beam energy of 94.8 MeV. The shape of the excitation function was almost the same as that of
Rf, whereas it was quite different from those of
Rf and
Rf. A few-second spontaneously fissioning nuclide previously reported as
Rf and
Rf observed in
Cm +
O reaction was identified as
Rf.
Morita, Kosuke*; Morimoto, Koji*; Kaji, Daiya*; Haba, Hiromitsu*; Ozeki, Kazutaka*; Kudo, Yuki*; Sumita, Takayuki*; Wakabayashi, Yasuo*; Yoneda, Akira*; Tanaka, Kengo*; et al.
Journal of the Physical Society of Japan, 81(10), p.103201_1 - 103201_4, 2012/10
Times Cited Count:175 Percentile:97.27(Physics, Multidisciplinary)An isotope of the 113th element, 113, was produced in a nuclear reaction with a
Zn beam on a
Bi target. We observed six consecutive
decays following the implantation of a heavy particle in nearly the same position in the semiconductor detector, in extremely low background condition. The fifth and sixth decays are fully consistent with the sequential decays of
Db and
Lr both in decay energies and decay times. This indicates that the present decay chain consisted of
113,
Rg (Z = 111),
Mt (Z = 109),
Bh (Z = 107),
Db (Z = 105), and
Lr (Z = 103) with firm connections. This result, together with previously reported results from 2004 and 2007, conclusively leads the unambiguous production and identification of the isotope
113, of the 113th element.
Yamashita, Shinichi; Baldacchino, G.*; Maeyama, Takuya*; Taguchi, Mitsumasa; Muroya, Yusa*; Lin, M.*; Kimura, Atsushi; Murakami, Takeshi*; Katsumura, Yosuke
Free Radical Research, 46(7), p.861 - 871, 2012/07
Times Cited Count:26 Percentile:54.84(Biochemistry & Molecular Biology)Radiation-induced reactions in aqueous solutions of a water-soluble coumarin derivative, coumarin-3-carboxyl acid (C3CA), have been investigated by pulse radiolysis with 35-MeV electron beam, final product analysis after Co
-irradiations, and deterministic model simulations. It was found that C3CA reacts with the hydroxyl radical (
OH) as well as the hydrated electron at nearly diffusion-controlled rate constants: 6.8
10
and 2.1
10
M
s
, respectively. Reactivity of C3CA toward O
was not confirmed. Production of a fluorescent molecule 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA) was detected by a fluorescence spectrometer coupled with high performance liquid chromatography. Production yields of 7OH-C3CA were in a range from 0.025 to 0.18 (100 eV)
, depending on irradiation conditions. A variety of the yield with saturating gas, additive, and C3CA concentration implied that there are at least two pathways from scavenging reaction of C3CA toward
OH to 7OH-C3CA: peroxidation reaction followed by elimination of perhydroxyl radical and disproportionation reaction. A reaction mechanism involving the two pathways was proposed and incorporated into the simulations, showing good explanation of experimentally measured 7OH-C3CA yields with a constant conversion factor from
OH scavenging to 7OH-C3CA production, 4.7%, unless
-BuOH is not added.
Nanjo, Isao; Amano, Yuki; Iwatsuki, Teruki; Kunimaru, Takanori; Murakami, Hiroaki; Hosoya, Shinichi*; Morikawa, Keita
JAEA-Research 2011-048, 162 Pages, 2012/03
The observation technique of hydrochemical condition in low permeable sedimentary rock around the facility is one of R&D subjects. We report, (1) development of hydrochemical monitoring system to observe water pressure, pH, electric conductivity, dissolved oxygen, redox potential and temperature, (2) hydrochemical observation results around URL under construction. The applicability of the hydrochemical monitoring system is evaluated for low permeable sedimentary rock bearing abundant dissolved gases. The hydrochemical observation during facility construction demonstrates that pH and redox potential of groundwater almost did not changed even at hydraulic disturbed zone (water pressure decreased zone).
Li, Z.*; Toyoshima, Atsushi; Asai, Masato; Tsukada, Kazuaki; Sato, Tetsuya; Sato, Nozomi; Kikuchi, Takahiro; Nagame, Yuichiro; Schdel, M.; Pershina, V.*; et al.
Radiochimica Acta, 100(3), p.157 - 164, 2012/03
Times Cited Count:14 Percentile:69.48(Chemistry, Inorganic & Nuclear)Maeyama, Takuya*; Yamashita, Shinichi; Taguchi, Mitsumasa; Baldacchino, G.*; Sihver, L.*; Murakami, Takeshi*; Katsumura, Yosuke
Radiation Physics and Chemistry, 80(12), p.1352 - 1357, 2011/12
Times Cited Count:14 Percentile:70.32(Chemistry, Physical)Coumari-3-carboxylic acid scavenges OH radical produced in water radiolysis, leading to production of a fluorescence probe at almost constant ratio relative to the amount of the scavenged OH radicals. This was applied in estimation of OH radical yield in water radiolysis especially with therapeutic heavy ions of GeV-class energies, i.e. C
beams of 135, 290 and 400 MeV/u. OH yields upstream of the Bragg peaks decreased with increasing penetration depth of the projectile ions while that downstream suddenly jumped up to near the value for low-LET radiations such as
-rays. This is due to low-LET secondary fragmentation ions produced during long trajectory of the primary projectile C ion. Quantitative explanation by nuclear fragmentation simulations with PHITS code was attempted and resulted in 15-45% underestimation in the region behind the Bragg peaks, which would be due to the difference in geometries between irradiations of the sample solutions and dosimetry with a small ionization chamber.
Kitawaki, Shinichi; Nakayoshi, Akira; Fukushima, Mineo; Sakamura, Yoshiharu*; Murakami, Tsuyoshi*; Akiyama, Naoyuki*
Proceedings of International Conference on Toward and Over the Fukushima Daiichi Accident (GLOBAL 2011) (CD-ROM), 5 Pages, 2011/09
In the FaCT project, the metal fuel cycle including metal fuel fast reactor and pyrochemical reprocessing has been being developed. JAEA and CRIEPI have continued a collaborative study on pyrochemical reprocessing. In the pyrochemical reprocessing, actinides in the spent fuels dissolve anodically in the LiCl-KCl, and U is collected selectively on a solid cathode, Pu and MA are recovered simultaneously in a liquid Cd cathode. In the previous electrorefining tests, at the anode Zr was allowed to dissolve into the electrolyte salt together with U, Pu and MA. The Zr co-dissolution may cause some problems. In this study, through the anode dissolution test of U-Pu-Zr alloy fuel, the controlling the dissolution of the Zr and the improvement of dissolution ratio of U, Pu were studied. The U-Pu alloy was prepared from MOX pellets by using the electrochemical reduction method. U-Pu-Zr ternary alloy was produced by alloying the obtained U-Pu alloy and prepared U-Zr alloy. U-Pu-Zr ternary alloy was immersed into electrolyte salt, and electrolysis test was carried out.
Murakami, Tsuyoshi*; Sakamura, Yoshiharu*; Akiyama, Naoyuki*; Kitawaki, Shinichi; Nakayoshi, Akira; Fukushima, Mineo
Journal of Nuclear Materials, 414(2), p.194 - 199, 2011/07
Times Cited Count:17 Percentile:76.08(Materials Science, Multidisciplinary)An electrorefining is one of the main steps of pyrochemical reprocessing of spent metallic fuels (U-Zr, U-Pu-Zr). The electrorefining is carried out dissolving a portion of Zr together with actinides to accomplish a high dissolution ratio of actinides. However, the electrorefining with Zr co-dissolution should bring some practical problems in the pyrochemical reprocessing. Therefore, electrorefining tests of non-irradiated U-Pu-Zr alloy were performed with minimizing the amount of Zr dissolved in LiCl-KCl-(U, Pu, Am)Cl melts at 773 K. The tests were performed both by potentiostatic electrolysis at -1.0 V (Ag
/Ag) that was more negative than the Zr dissolution potential and by galvanostatic electrolysis with a limited amount of Zr dissolution. The ICP-AES analysis of the anode residues confirmed that a high dissolution ratio of actinides (U;
99.6%, Pu; 99.9%) was successfully demonstrated at both electrolyses.