Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shobu, Takahisa; Shiro, Ayumi*; Muramatsu, Toshiharu*
SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 9(5), p.318 - 323, 2021/08
Laser welding has already been put into practical use for various metal materials because the irradiation area is very small and the control is easy. In this study, we evaluated strain, stress, deformation, etc. near the processing affected area by high-energy synchrotron radiation X-ray diffraction method, which is one of the problems of laser welding of different materials that are expected to be put into practical use. As a result of internal deformation measurement of the bonding of dissimilar materials of copper and iron, it was confirmed that the copper side with a high coefficient of linear expansion was hardly deformed, strong tensile strain on the iron side, and a plastic deformation region on the heat-affected zone. In addition, a retained austenite phase, which is thought to be caused by the mixture of copper, was observed in the plastic deformation region of iron, and further problems were clarified in the evaluation of material strength in the mixed metallic materials.
Shobu, Takahisa; Shiro, Ayumi*; Kono, Fumiaki*; Muramatsu, Toshiharu; Yamada, Tomonori; Naganuma, Masayuki; Ozawa, Takayuki
Quantum Beam Science (Internet), 5(2), p.17_1 - 17_9, 2021/06
The automotive industries employ laser beam welding because it realizes a high energy density without generating irradiation marks on the opposite side of the irradiated surface. Typical measurement techniques such as strain gauges and tube X-rays cannot assess the localized strain at a joint weld. Herein high-energy synchrotron radiation X-ray diffraction was used to study the internal strain distribution of laser lap joint PNC-FMS steels (2- and 5-mm thick) under loading at a high temperature. As the tensile load increased, the local tensile and compressive strains increased near the interface. These changes agreed well with the finite element analysis results. However, it is essential to complementarily utilize internal defect observations by X-ray transmission imaging because the results depend on the defects generated by laser processing.
Muramatsu, Toshiharu
JAEA-Research 2019-008, 111 Pages, 2019/11
A general-purpose three-dimensional thermohydraulics numerical simulation code SPLICE (residual Stress control using Phenomenological modeling for Laser welding repair process In Computational Environment) was designed to deal with gas-liquid-solid consolidated incompressible viscous flows with a phase change process in various laser applications. Main features of the SPLICE code are as follows: (1) A multi-scale model is used to simulate complicated phenomena, such as welding to solidification of metal materials, thermal and mechanical interactions among gas, liquid and solid phases, etc., (2) SPLICE code is applicable for the evaluation of welding, cutting, piercing, coating, additive manufacturing, etc. and (3) A graphic user interface (GUI) is prepared for users to easy utilization of the SPLICE code. This report describes the details of the mathematics, physics, numerics, sample applications of the SPLICE code.
Muramatsu, Toshiharu; Sato, Yuji; Kamei, Naomitsu; Aoyagi, Yuji*; Shobu, Takahisa
Nihon Kikai Gakkai Dai-13-Kai Seisan Kako, Kosaku Kikai Bumon Koenkai Koen Rombunshu (No.19-307) (Internet), p.157 - 160, 2019/10
no abstracts in English
Naoe, Takashi; Teshigawara, Makoto; Futakawa, Masatoshi; Mizutani, Haruki; Muramatsu, Toshiharu; Yamada, Tomonori; Ushitsuka, Yuji*; Tanaka, Nobuatsu*; Yamasaki, Kazuhiko*
Proceedings of 8th International Congress on Laser Advanced Materials Processing (LAMP 2019) (Internet), 5 Pages, 2019/05
Laser cutting is one of the options in the disposal of radio-active waste, such as spallation neutron target vessel in J-PARC, etc. Due to unique characteristic of laser, such as non-contact system, it is more easily to provide remote-controlled system in comparison with conventional one, such as mechanical cutting machine, etc. However, a demerit of laser cutting is the sputter and fume caused by laser cutting, resulting in contamination with radio-active materials its surroundings. Recently it was developed that the spatter suppression technique by controlling laser beam profile in laser welding process. In order to apply this suppression technique to laser cutting, first of all, we attempted to observe the phenomenon at melting area during laser cutting using a high-speed video camera in order to make the physical model. The result showed that the appearance of fume and sputter were independently confirmed in the time evolution.
Furusawa, Akinori; Nishimura, Akihiko; Takenaka, Yusuke; Muramatsu, Toshiharu
Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 4 Pages, 2019/05
The aim of this work presented here is to demonstrate the potential of our method for remote controllable systematization, of testing reinforced concrete based on ultrasonic guided-wave on rebar. In order to investigate how the deteriorated phenomena has the effects on the ultrasonic guided-wave propagating on the rebar, following experiments are conducted. Test pieces used for the experiments are made of bare steel rod and cylindrically pored mortar to be representing the actual reinforced concrete. Irradiating the end face of the rod with nanosecond pulsed laser makes the ultrasonic guided-wave induced, at the other end face, the guided wave signal is measured with ultrasonic receiver. One test piece is with no damage and the other is deteriorated test piece. The deterioration is made by electrolytic corroded method. The guided-wave signal from the deteriorated test piece is measured with respect to each energization time, the change in the waveform is investigated. Analyzing the results from the experiments above, it is found that the deterioration of rebar has remarkable effects on the guided-wave signal. The signal from test piece with no damage has strong peak at both specific frequency and lower region, on the other hand, signals from deteriorated test piece has only at the specific frequency depending on the diameter of the steel rod. Finally, discussion concerning with the experimental results and future perspective for remote controllable systematization of our method is carried out.
Muramatsu, Toshiharu
Sumato Purosesu Gakkai-Shi, 8(1), p.4 - 8, 2019/01
no abstracts in English
Muramatsu, Toshiharu
Nihon Kikai Gakkai 2018-Nendo Nenji Taikai Koen Rombunshu (DVD-ROM), 5 Pages, 2018/09
A general-purpose three-dimensional thermohydraulics computer science simulation code SPLICE was developed at JAEA and designed to deal with gas-liquid-solid consolidated incompressible viscous flows with a phase change process in various laser applications. The results obtained from various numerical simulations using the SPLICE code are very encouraging in the sense that the SPLICE code would be used as one of the efficient front-loading tools to reduce overhead loads in laser processing.
Muramatsu, Toshiharu
Reza Kako Gakkai-Shi, 25(2), p.81 - 85, 2018/06
no abstracts in English
Muramatsu, Toshiharu
Dai-89-Kai Reza Kako Gakkai Koen Rombunshu, p.115 - 119, 2018/05
no abstracts in English
Muramatsu, Toshiharu; Sano, Kazuya; Terauchi, Makoto
Dekomisshoningu Giho, (57), p.65 - 74, 2018/03
The Decommissioning Technology Demonstration Test Center (tentative name) is established as a central facility of "Fukui Smart Decommissioning Technology Demonstration Base" which was adopted by the support policy "Regional Science and Technology Demonstration Base Establishment Project" of the Ministry of Education, Culture, Sports, Science and Technology in FY 2016 supplementary budget. This facility is a base to train local companies about technology concerning the decommissioning of nuclear power plants and for the industry, academia and government to contribute to the development of the regional economy and solving the problem of decommissioning under one roof, and consists of decommissioning dismantling technology verification field, laser processing advanced field and decommissioning mock-up test field. The papers introduce the outline of the facilities in each of these fields.
Muramatsu, Toshiharu
Hikari Araiansu, 28(12), p.31 - 35, 2017/12
no abstracts in English
Muramatsu, Toshiharu; Aoyagi, Yuji*; Yoshiuji, Takahiro*
Nihon Kikai Gakkai 2017-Nendo Nenji Taikai Koen Rombunshu (DVD-ROM), 4 Pages, 2017/09
A general-purpose three-dimensional thermohydraulics numerical simulation code SPLICE was developed at Japan Atomic Energy Agency and designed to deal with gas-liquid-solid consolidated incompressible viscous flows with a phase change process in various laser applications, such as welding, coating, cutting, etc. The result obtained from metal powder laser additive manufacturing simulations is very encouraging in the sense that the SPLICE code would be used as one of efficient tools to provide the laser irradiation conditions.
Furusawa, Akinori; Takenaka, Yusuke*; Nishimura, Akihiko; Mizutani, Haruki; Muramatsu, Toshiharu
Nihon Hozen Gakkai Dai-14-Kai Gakujutsu Koenkai Yoshishu, p.479 - 480, 2017/08
Industry development activities on applied laser research held at Fukui branch of Japan Atomic Energy Agency are reported. Industry development is inevitable in long-term vision and strategy for developing maintenance technology and establishing decommissioning technology. Fukui branch of JAEA has organized public seminar offering businesses to promote these activities and technology exchange for years. Here some examples offered in the current seminar are introduced concerning with laser technology. Finally, our goal and important point of view are discussed.
Muramatsu, Toshiharu
Reza Kenkyu, 44(12), p.799 - 803, 2016/12
no abstracts in English
Muramatsu, Toshiharu
KANRIN, 68, p.14 - 18, 2016/09
no abstracts in English
Muramatsu, Toshiharu
Dai-84-KaiReza Kako Gakkai Koen Rombunshu, p.113 - 116, 2016/01
A general-purpose three-dimensional thermohydraulics numerical simulation code SPLICE was developed at Japan Atomic Energy Agency and designed to deal with gas-liquid-solid consolidated incompressible viscous flows with a phase change process in various laser applications, such as welding, coating, cutting, etc. The result obtained from laser coating simulations is very encouraging in the sense that the SPLICE code would be used as one of efficient front-loading tools for related to the laser coating processes.
Muramatsu, Toshiharu
RIST News, (60), p.22 - 27, 2016/01
no abstracts in English
Kono, Fumiaki; Sogame, Motomu; Yamada, Tomonori; Shobu, Takahisa; Naganuma, Masayuki; Ozawa, Takayuki; Muramatsu, Toshiharu
JAEA-Technology 2015-004, 57 Pages, 2015/03
Laser welding of ferritic/martensitic steel (PNC-FMS) sheets with different thicknesses (2 mm and 5 mm) was examined to investigate the weldability between the inner and outer duct in fast reactor fuel assemblies with inner duct structure (FAIDUS); the objective of the inner duct is to avoid the re-criticality in case of the core melting accident. Laser-spot and melt-run welding was performed at various laser powers, welding times and velocities to find out the appropriate welding conditions with few defects and enough penetration depth. As for the spot welding, furthermore, slow cooling rate or pulsed laser irradiation could reduce the crack and porosity in the welded zone. The strain of the welded zone almost disappeared and the hardness was comparable with that of the base metal by applying post welding heat treatment at 690 C for 103 min. In addition, the shear strength of welded joints was confirmed to be sufficiently higher than the provisional allowance shear stress. These results indicate that laser welding would be probably applied to the PNC-FMS inner and outer ducts.
Yamada, Tomonori; Muramatsu, Toshiharu
JAEA-Research 2014-026, 28 Pages, 2015/02
In this study the response of hardened cement pastes, which is a major component of concrete, to laser irradiation was investigated under various experimental conditions aiming at the future application to "laser-processing" of concrete. (1) Evaluation of water-cement ratio for laser irradiation. It was found that hardened cement paste subjected to laser irradiation explodes very easily to be hollowed in all the experimental conditions; this response is applicable to "laser-drilling" of a hardened cement paste. (2) Evaluation of the kind of mortar for laser irradiation. Totally 75 laser irradiation tests for fixed mortar blocks were performed with combinations of following experimental conditions: fine aggregate in the mortar blocks was either of quartz, limestone, or Nachiguro-ishi. Although it was found that all kinds of the mortar fuse under laser irradiation after all, difference in the response to laser irradiation among the mortars was also found.