Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shimomura, Kenta; Yamashita, Takuya; Nagae, Yuji
JAEA-Data/Code 2022-012, 270 Pages, 2023/03
In a light water reactor, which is a commercial nuclear power plant, a severe accident such as loss of cooling function in the reactor pressure vessel (RPV) and exposure of fuel rods due to a drop in the water level in the reactor can occur when a trouble like loss of all AC power occurs. In the event of such a severe accident, the RPV may be damaged due to in-vessel conditions (temperature, molten materials, etc.) and leakage of radioactive materials from the reactor may occur. Verification and estimation of the process of RPV damage, molten fuel debris spillage and expansion, etc. during accident progression will provide important information for decommissioning work. Possible causes of RPV failure include failure due to loads and restraints applied to the RPV substructure (mechanical failure), failure due to the current eutectic state of low-melting metals and high-melting oxides with the RPV bottom members (failure due to inter-material reactions), and failure near the melting point of the structural members at the RPV bottom. Among the failure factors, mechanical failure is verified by numerical analysis (thermal hydraulics and structural analysis). When conducting such a numerical analysis, the heat transfer properties (thermal conductivity, specific heat, density) and material properties (thermal conductivity, Young's modulus, Poisson's ratio, tensile, creep) of the materials (zirconium, boron carbide, stainless steel, nickel-based alloy, low alloy steel, etc.) constituting the RPV and in-core structures to near the melting point are required to evaluate the creep failure of the RPV. In this document, we compiled data on the properties of base materials up to the melting point of each material constituting the RPV and in-core structures, based on published literature. In addition, because welds exist in the RPV and in-core structures, the data on welds are also included in this report, although they are limited.
Sato, Takumi; Nagae, Yuji; Kurata, Masaki; Quaini, A.*; Guneau, C.*
CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 79, p.102481_1 - 102481_11, 2022/12
Times Cited Count:0 Percentile:0.01(Thermodynamics)Yamamoto, Takeshi; Fujita, Manami; Gogami, Toshiyuki*; Harada, Takeshi*; Hayakawa, Shuhei*; Hosomi, Kenji; Ichikawa, Yudai; Ishikawa, Yuji*; Kamata, K.*; Kanauchi, H.*; et al.
EPJ Web of Conferences, 271, p.03001_1 - 03001_5, 2022/11
Yamashita, Takuya; Sato, Takumi; Madokoro, Hiroshi; Nagae, Yuji
Annals of Nuclear Energy, 173, p.109129_1 - 109129_15, 2022/08
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Pshenichnikov, A.; Shibata, Hiroki; Yamashita, Takuya; Nagae, Yuji; Kurata, Masaki
Journal of Nuclear Science and Technology, 59(3), p.267 - 291, 2022/03
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Proceedings of TopFuel 2021 (Internet), 12 Pages, 2021/10
Pshenichnikov, A.; Kurata, Masaki; Nagae, Yuji
Journal of Nuclear Science and Technology, 58(9), p.1025 - 1037, 2021/09
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 7 Pages, 2021/08
Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Journal of Nuclear Science and Technology, 58(4), p.416 - 425, 2021/04
Times Cited Count:8 Percentile:73.86(Nuclear Science & Technology)Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken
JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03
Tsuchikawa, Yusuke; Abe, Yuta; Oishi, Yuji*; Kai, Tetsuya; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Kimura, Atsushi; Nakamura, Shoji; Harada, Masahide; et al.
JPS Conference Proceedings (Internet), 33, p.011074_1 - 011074_6, 2021/03
In the decommissioning of the Fukushima-Daiichi (1F) Nuclear Power Plant, it is essential to understand characteristics of the melted core materials. The estimation of boride in the real debris is of great importance to develop safe debris removal plans. Hence, it is required to investigate the amount of boron in the melted core materials with nondestructive methods. Prompt gamma-ray activation analysis (PGAA) is one of the useful techniques to determine the amount of borides by means of the 478 keV prompt gamma-ray from neutron absorption reaction of boron. Moreover, it is well known that the width of the 478 keV gamma-ray peak is typically broadened due to the Doppler effect. The degree of the broadening is affected by coexisting materials, and can be recognized by the width of the prompt gamma-ray peak. As a feasibility study, the prompt gamma-ray from boride samples were measured using the ANNRI, NOBORU, and RADEN beamlines at the Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Complex (J-PARC).
Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08
Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Mechanical Engineering Journal (Internet), 7(3), p.19-00503_1 - 19-00503_10, 2020/06
Sudo, Ayako; Meszaros, B.*; Poznyak, I.*; Sato, Takumi; Nagae, Yuji; Kurata, Masaki
Journal of Nuclear Materials, 533, p.152093_1 - 152093_8, 2020/05
Times Cited Count:4 Percentile:58.08(Materials Science, Multidisciplinary)Pshenichnikov, A.; Kurata, Masaki; Bottomley, D.; Sato, Ikken; Nagae, Yuji; Yamazaki, Saishun
Journal of Nuclear Science and Technology, 57(4), p.370 - 379, 2020/04
Times Cited Count:10 Percentile:67.91(Nuclear Science & Technology)Pshenichnikov, A.; Nagae, Yuji; Kurata, Masaki
Mechanical Engineering Journal (Internet), 7(2), p.19-00477_1 - 19-00477_8, 2020/04
Pham, V. H.; Nagae, Yuji; Kurata, Masaki; Bottomley, D.; Furumoto, Kenichiro*
Journal of Nuclear Materials, 529, p.151939_1 - 151939_8, 2020/02
Times Cited Count:11 Percentile:90.64(Materials Science, Multidisciplinary)Pham, V. H.; Nagae, Yuji; Kurata, Masaki; Furumoto, Kenichiro*; Sato, Hisaki*; Ishibashi, Ryo*; Yamashita, Shinichiro
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.670 - 674, 2019/09
Sudo, Ayako; Mizusako, Fumiki*; Hoshino, Kuniyoshi*; Sato, Takumi; Nagae, Yuji; Kurata, Masaki
Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(3), p.111 - 118, 2019/08
Cooling rate of molten core materials during solidification significantly affects the segregation of major constituents of fuel debris. To understand general tendency of the segregation, liquefaction/solidification tests of simulated corium (UO, ZrO
, FeO, B
C and sim-FP oxides) were performed. Simulated corium was heated up to 2600
C under Ar atmosphere and then cooled down with two different cooling processes; furnace cooling (average cooling rate is approximately 744
C/min) and slow cooling (cooling rate in 2600
C
2300
C is 5
C/min and in 2300
C
1120
C is approximately 788
C/min). Element analysis detected three oxide phases with different composition and one metal phase in both solidified samples. Solubility of FeO in these oxide phases was mostly fixed to be 12
5at% in both samples, which is in reasonable accordance with the value estimated from UO
-ZrO
-FeO phase diagrams. However, a significant grain-growth of one oxide phase, rich in Zr-oxide, was detected only in the slowly cooled sample. The composition of this particular oxide phase is comparable to the initial average composition. The condensation is considered to be caused by the connection of remaining liquid agglomerates during slow solidification.
Pshenichnikov, A.; Kurata, Masaki; Nagae, Yuji
Dai-24-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 4 Pages, 2019/06