Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nagai, Haruyasu; Nakayama, Hiromasa; Satoh, Daiki; Tanimori, Toru*
Dai-52-Kai Kashika Joho Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2024/07
A novel monitoring method for the quantitative visualization of 3D distribution of a radioactive plume accidentally released from a nuclear facility is proposed, and the feasibility of its analysis method is demonstrated by preliminary test using hypothetical data. The proposed method is the combination of gamma-ray imaging spectroscopy with the electron tracking Compton camera (ETCC) and real-time high-resolution atmospheric dispersion simulation based on 3D wind observation with Doppler lidar. ETCC can acquire the angle distribution images of direct gamma-ray from a specific radionuclide in a target radioactive plume. The 3D distribution of radioactive plume is inversely reconstructed from direct gamma-ray images by several ETCCs located around the target by harmonizing with the air concentration distribution pattern of the plume predicted by real-time atmospheric dispersion simulation. Analysis methods were developed and tested by using hypothetical data generated by numerical simulations of atmospheric dispersion and radiation transport.
Nagai, Haruyasu; Furuta, Yoshihiro*; Nakayama, Hiromasa; Satoh, Daiki
Journal of Nuclear Science and Technology, 60(11), p.1345 - 1360, 2023/11
Times Cited Count:2 Percentile:65.72(Nuclear Science & Technology)A novel monitoring method for the quantitative visualization of 3D distribution of a radioactive plume and source term estimation of released radionuclides is proposed and its feasibility is demonstrated by preliminary test. The proposed method is the combination of gamma-ray imaging spectroscopy with the Electron Tracking Compton Camera (ETCC) and real-time high-resolution atmospheric dispersion simulation based on 3D wind observation with Doppler lidar. The 3D distribution of a specific radionuclide in a target radioactive plume is inversely reconstructed from line gamma-ray images from each radionuclide by several ETCCs located around the target by harmonizing with the air concentration distribution pattern of the plume predicted by real-time atmospheric dispersion simulation. A prototype of the analysis method was developed, showing a sufficient performance in several test cases using hypothetical data generated by numerical simulations of atmospheric dispersion and radiation transport.
Kadowaki, Masanao; Nagai, Haruyasu; Yoshida, Toshiya*; Terada, Hiroaki; Tsuzuki, Katsunori; Sawa, Hiroki*
Journal of Nuclear Science and Technology, 60(10), p.1194 - 1207, 2023/10
Times Cited Count:2 Percentile:65.72(Nuclear Science & Technology)This study develops an estimation method using machine learning for uncertainty in forecasted plume directions. Bayesian machine learning was used in the machine learning approach. A three-day forecast simulation was conducted every day from 2015-2020, considering a hypothetical release of Cs from a nuclear facility to create training and test datasets for the machine learning. The findings reveal that the rate of good predictability was greater than 50% even in the forecast 36 h later when investigating the effectiveness of the Bayesian model on uncertainty estimation. Additionally, the frequency of miss prediction of higher uncertainty was low (0.9%-7.9%) throughout the forecast period. However, the rate of over-prediction of uncertainty increased with forecast time up to 31.2%, which is acceptable as a conservative estimation. These results show that the Bayesian model used in this study effectively estimates the uncertainty of plume directions predicted through atmospheric dispersion simulations.
Nagai, Haruyasu; Chino, Masamichi*
Ten Hasseigen Karano Mesosukeru Kakusan Shumireshon; Fukushima Daiichi Genshiryoku Hatsudensho Jiko O Fumaete (Kisho Kenkyu Noto Dai-248-Go), p.1 - 58, 2023/09
no abstracts in English
Ota, Masakazu; Takahara, Shogo; Yoshimura, Kazuya; Nagakubo, Azusa; Hirouchi, Jun; Hayashi, Naho; Abe, Tomohisa; Funaki, Hironori; Nagai, Haruyasu
Journal of Environmental Radioactivity, 264, p.107198_1 - 107198_15, 2023/08
Times Cited Count:0 Percentile:0.00(Environmental Sciences)One of the current major radiation exposure pathways from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident-fallout is inhalation of the re-suspended Cs occurring in air. While wind-induced soil particle resuspension has been recognized as a primary mechanism of Cs resuspension, studies following the FDNPP accident suggested that fungal spores can be a significant source of the atmospheric Cs particularly in the rural areas such as difficult-to-return zone (DRZ). To elucidate the relative importance of the two resuspension phenomena, we propose a model simulating resuspension of Cs as soil particles and fungal spores, and applied it to DRZ. Our model's calculation showed that soil particle resuspension was responsible for the surface-air Cs observed during winter-spring, but could not account for the higher Cs concentrations observed in summer-autumn. The higher concentrations in the summer-autumn were in general reproduced by implementing fungal spore Cs emission, that replenished low soil particle Cs resuspension in that period. According to our model's concept, Cs accumulation in fungal spores and high spore emission rate characterized by the rural environment were likely responsible for the abundance of spore Cs in the air. It was inferred that the influence of the fungal spores on the atmospheric Cs would last longer since un-decontaminated forests still exist in DRZ.
Terada, Hiroaki; Nagai, Haruyasu; Kadowaki, Masanao; Tsuzuki, Katsunori
Journal of Nuclear Science and Technology, 60(8), p.980 - 1001, 2023/08
Times Cited Count:4 Percentile:87.43(Nuclear Science & Technology)It is essential to establish a method for reconstructing the source term and spatiotemporal distribution of radionuclides released into the atmosphere due to a nuclear accident for emergency countermeasures. We examined the dependency of a source term estimation method based on Bayesian inference using atmospheric dispersion simulation and environmental monitoring data on the availability of various monitoring data. Additionally, we examined the applicability of this method to a real-time estimation conducted immediately after an accident. A sensitivity analysis of the estimated source term during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident for combinations of various monitoring data indicated that using monitoring data with a high temporal and spatial resolution and the concurrent use of air concentration and surface deposition data is effective for accurate estimation. A real-time source term estimation experiment assuming the situation of monitoring data acquisition during the FDNPS accident revealed that this method could provide the necessary source term for grasping the overview of surface contamination in the early phase and evaluating the approximate accident scale. If the immediate online acquisition of monitoring data and regular operation of an atmospheric dispersion simulation are established, this method can provide the source term in near-real time.
Shimada, Kazumasa; Nagai, Haruyasu; Hashimoto, Makoto; Iimoto, Takeshi*
Nihon Genshiryoku Gakkai-Shi ATOMO, 65(5), P. 290, 2023/05
This article is part of the special feature article "What should be done from now on after the 1F accident and what should be conveyed to the next generation after the 1F accident?" of the Atomic Energy Society of Japan, which summarizes the discussions and future proposals on nuclear disaster prevention in which the members of the Health Physics and Environment Science Subcommittee have been involved. In view of the recommendations of the Accident Investigation Committee of the Atomic Energy Society of Japan and the Meteorological Society of Japan, the behavior of radioactive plumes and the prediction of residents' evacuation behavior should be studied to support decision-making on evacuation and other protective measures for residents in and outside the UPZ. Furthermore, decision-making on protective measures and practical risk communication to residents based on radiation health risks to residents and ethical aspects are newly proposed.
Suzuki, Gen*; Ishikawa, Tetsuo*; Oba, Takashi*; Hasegawa, Arifumi*; Nagai, Haruyasu; Miyatake, Hirokazu*; Yoshizawa, Nobuaki*
Journal of Radiation Research (Internet), 63(6), p.796 - 804, 2022/11
Times Cited Count:3 Percentile:32.67(Biology)To elucidate the association between radiation dose and thyroid cancer after the 2011 Fukushima Daiichi Nuclear Power Station (FDNPS) accident, it is essential to estimate individual thyroid equivalent doses (TEDs) to children. In a previous study, we reported a methodology for reconstructing TEDs from inhalation based on individual behavioural survey sheets combined with a spatiotemporal radionuclides database constructed by an atmospheric transport, diffusion, and deposition model (ATDM). In the present study, we further refined our methodology and estimated the combined TEDs from inhalation and ingestion among children in 16 municipalities around the nuclear power station utilizing 3,256 individual whereabouts questionnaire survey sheets. Distributions of estimated TEDs were similar to estimates based on direct thyroid measurements in 1080 children in Iwaki City, Kawamata Town, Iitate Village, and Minamisoma City. Mean TEDs in 1-year-old children ranged from 1.3 mSv in Date City to 14.9 mSv in Odaka Ward in Minamisoma City, and the 95th percentiles varied from 2.3 mSv in Date City to 28.8 mSv in Namie Town. In the future, this methodology can be useful for a case-control study of thyroid cancer after the FDNPS accident.
Nakayama, Hiromasa; Onodera, Naoyuki; Satoh, Daiki; Nagai, Haruyasu; Hasegawa, Yuta; Idomura, Yasuhiro
Journal of Nuclear Science and Technology, 59(10), p.1314 - 1329, 2022/10
Times Cited Count:5 Percentile:72.25(Nuclear Science & Technology)We developed a local-scale high-resolution atmospheric dispersion and dose assessment system (LHADDAS) for safety and consequence assessment of nuclear facilities and emergency response to nuclear accidents or deliberate releases of radioactive materials in built-up urban areas. This system is composed of pre-processing of input files, main calculation by local-scale high-resolution atmospheric dispersion model using large-eddy simulation (LOHDIM-LES) and real-time urban dispersion simulation model based on a lattice Boltzmann method (CityLBM), and post-processing of dose-calculation by simulation code powered by lattice dose-response functions (SIBYL). LHADDAS has a broad utility and offers superior performance in (1) simulating turbulent flows, plume dispersion, and dry deposition under realistic meteorological conditions, (2) performing real-time tracer dispersion simulations using a locally mesh-refined lattice Boltzmann method, and (3) estimating air dose rates of radionuclides from air concentrations and surface deposition in consideration of the influence of individual buildings and structures. This system is promising for safety assessment of nuclear facilities as an alternative to wind tunnel experiments, detailed pre/post-analyses of a local-scale radioactive plume dispersion in case of nuclear accidents, and quick response to emergency situations resulting from deliberate release of radioactive materials by a terrorist attack in an urban central district area.
Yoshida, Toshiya; Nagai, Haruyasu; Terada, Hiroaki; Tsuzuki, Katsunori; Sawa, Hiroki*
Journal of Nuclear Science and Technology, 59(1), p.55 - 66, 2022/01
Times Cited Count:3 Percentile:37.09(Nuclear Science & Technology)Atmospheric transport, dispersion, and deposition models (ATDMs) can support decision-making during nuclear emergencies; however, uncertainties in the ATDM results need to be carefully evaluated. To investigate the uncertainties derived from meteorological forecast inputs, we conducted three-day forecast simulations every day for one year with hypothetical releases of radionuclides (one-hour releases every 6 h) from a nuclear facility. The forecast outputs were compared with the analysis outputs during the same period. The difference between the outputs is treated as the uncertainty in the forecasts and is represented as an angle based on the discrepancy in the plume directions between the analysis and forecast outputs. Using meteorological inputs made by Japan Meteorological Agency, the discrepancy angle (Ang) increased by approximately 10 per day on an annual average basis. Meanwhile, the Ang values were occasionally 4-5 times higher than the annual average during short time periods. Since the Ang time series show seasonal and diurnal changes, the statistical characteristics likely depend on the geographical and meteorological conditions, as well as the types of meteorological inputs. Additionally, a main factor in the uncertainty is the wind-direction difference between the analysis and forecast outputs on scales of more than or less than 100 km.
Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori; Nagai, Haruyasu
JAEA-Review 2021-021, 61 Pages, 2021/11
Triggered by the Fukushima Daiichi Nuclear Power Station accident, there have been a lot of arguments among various situations and levels about utilization of atmospheric dispersion models for a nuclear emergency preparedness and response. Most of these arguments, however, were alternative and extreme discussions on whether predictions by computational models could be applied or not for protective measures in a nuclear emergency, and it was hard to say that these arguments were politely conducted, based on scientific verification in an emergency response. It was known, on the other hand, that there were not a few potential users of atmospheric dispersion models and/or calculation results by the models within the Japan Atomic Energy Agency (JAEA) and outside. However, they seemed to have a lack of understanding and a misunderstanding on proper use of different kinds of atmospheric dispersion models. This report compares an outline of models and calculation method in atmospheric dispersion models for a nuclear emergency preparedness and response, with a central focus on the models which have been developed and used in the JAEA. Examples of calculations by these models are also described in the report. This report aims at contributing to future consideration and activities for potential users of atmospheric dispersion models within the JAEA and outside.
Kadowaki, Masanao; Furuno, Akiko; Nagai, Haruyasu; Kawamura, Hideyuki; Terada, Hiroaki; Tsuzuki, Katsunori; El-Asaad, H.
Journal of Environmental Radioactivity, 237, p.106704_1 - 106704_18, 2021/10
Times Cited Count:2 Percentile:9.66(Environmental Sciences)The source term of Cs for the Fukushima Daiichi Nuclear Power Station (FDNPS) accident was estimated from the results of local-scale atmospheric dispersion simulations and measurements. To confirm the source term's validity for reproducing the large-scale atmospheric dispersion of Cs, this study conducted hemispheric-scale atmospheric and oceanic dispersion simulations. In the dispersion simulations, the atmospheric-dispersion database system Worldwide version of System for Prediction of Environmental Emergency Dose Information (WSPEEDI)-DB and oceanic dispersion model SEA-GEARN-FDM were used. Compared with the air concentrations of Cs measured by the Comprehensive Nuclear-Test-Ban Treaty Organization, overall, the WSPEEDI-DB simulation reproduced the measurements with some overestimation. Furthermore, the deposition amounts of Cs was investigated using concentrations of Cs in seawater. The simulated seawater concentrations of Cs were underestimated regionally in the North Pacific. The overestimation and underestimation could be improved without contradiction between the air and seawater concentrations of Cs using more realistic precipitation in atmospheric dispersion simulations. This shows that the source term validated in this study could reproduce the spatiotemporal distribution of Cs because of the FDNPS accident in both local and large-scale atmospheric dispersion simulations.
Nakayama, Hiromasa; Satoh, Daiki; Nagai, Haruyasu; Terada, Hiroaki
Journal of Nuclear Science and Technology, 58(9), p.949 - 969, 2021/09
Times Cited Count:7 Percentile:69.06(Nuclear Science & Technology)We introduced a detailed dose calculation method considering building shielding effects into LOcal-scale High-resolution atmospheric DIspersion Model using LES (LOHDIM-LES). To estimate quickly and accurately dose distributions considering shielding effects of buildings, we employed the calculation method using dose-response matrices which were evaluated by photon transport simulations with Particle and Heavy-Ion Transport code System (PHITS). Compared to the air dose rate data obtained from monitoring posts in an actual nuclear facility, it was shown that the calculated dose rate is reasonably simulated well. It is concluded that LOHDIM-LES equipped with the calculation method using dose-response matrices can reasonably estimate the air dose rates considering shielding effects of individual buildings and structures.
Nagai, Haruyasu
Insights Concerning the Fukushima Daiichi Nuclear Accident, Vo.2; Environmental Effects and Remediation for Restoration, p.37 - 46, 2021/07
Radioactive materials were released into the environment due to the accident that occurred at the Fukushima Daiichi Nuclear Power Plant, which is operated by the Tokyo Electric Power Company. This release immediately led to the performance of an internal exposure dose assessment of iodine and other nuclides with a short half-life. To determine the necessary dose estimation, the spatial-temporal distribution of the atmospheric concentration of radioactive materials was reassessed by performing dispersion simulations with I, I, Te, and Cs with due consideration given to their contribution to the internal exposure doses. A database of the spatial-temporal distribution of the concentration was developed based on the results obtained from the calculations performed for each defined time at a horizontal interval of 3 km near the ground surface.
Terada, Hiroaki; Nagai, Haruyasu
Isotope News, (775), p.44 - 48, 2021/06
no abstracts in English
Nagai, Haruyasu
Fission Product Behavior under Severe Accident, p.112 - 116, 2021/05
no abstracts in English
Kadowaki, Masanao; Terada, Hiroaki; Nagai, Haruyasu
Atmospheric Environment; X (Internet), 8, p.100098_1 - 100098_17, 2020/12
The behaviors of atmospheric I and the global cycle of I remain incompletely understood because the spatiotemporal resolution of monitoring is insufficient and few measurement-based models have been reported. This study aims to quantitatively understand the global budget of I. When quantifying, we conduct global atmospheric I dispersion simulations covering from 2007 to 2010. To achieve this goal, the present study newly incorporated the iodine chemistry processes of two gas-phase chemical reactions, six photolysis reactions, and two heterogeneous reactions into an existing atmospheric I transport model (GEARN-FDM). Besides the aerial release of I from nuclear fuel reprocessing facilities, the model includes the volatilization processes of I compounds from Earth's surface. The net I exchange fluxes from the atmosphere to the Earth's surface of land and ocean were estimated as 18.0 GBq/y and 5.3 GBq/y, respectively. The global I emission from oceans was estimated as 7.2 GBq/y, nearly half of the emission totals were emitted from the English Channel (3.2 GBq/y). In addition, the global I emission from land was estimated as 1.7 GBq/y. The remarkable I emission from land was mainly appeared in Europe, Russia, and North America, and the emission distribution is impacted by the activities of the past and ongoing nuclear fuel reprocessing facilities. The total I emission from ocean and land is lower than the I emission from the model-included nuclear fuel reprocessing facilities (23.3 GBq/y), showing that the aerial release of nuclear fuel reprocessing facilities in operation is still an important I source.
Koarashi, Jun; Atarashi-Andoh, Mariko; Nagano, Hirohiko*; Sugiharto, U.*; Saengkorakot, C.*; Suzuki, Takashi; Kokubu, Yoko; Fujita, Natsuko; Kinoshita, Naoki; Nagai, Haruyasu; et al.
JAEA-Technology 2020-012, 53 Pages, 2020/10
There is growing concern that recent rapid changes in climate and environment could have a significant influence on carbon cycling in terrestrial ecosystems (especially forest ecosystems) and could consequently lead to a positive feedback for global warming. The magnitude and timing of this feedback remain highly uncertain largely due to a lack of quantitative understanding of the dynamics of organic carbon stored in soils and its responses to changes in climate and environment. The tracing of radiocarbon (natural and bomb-derived C) and stable carbon (C) isotopes through terrestrial ecosystems can be a powerful tool for studying soil organic carbon (SOC) dynamics. The primary aim of this guide is to promote the use of isotope-based approaches to improve our understanding of the carbon cycling in soils, particularly in the Asian region. The guide covers practical methods of soil sampling; treatment and fractionation of soil samples; preparation of soil samples for C (and stable nitrogen isotope, N) and C analyses; and C, N, and C measurements by the use of isotope ratio mass spectrometry and accelerator mass spectrometry (AMS). The guide briefly introduces ways to report C data, which are frequently used for soil carbon cycling studies. The guide also reports results of a case study conducted in a Japanese forest ecosystem, as a practical application of the use of isotope-based approaches. This guide is mainly intended for researchers who are interested but are not experienced in this research field. The guide will hopefully encourage readers to participate in soil carbon cycling studies, including field works, laboratory experiments, isotope analyses, and discussions with great interest.
El-Asaad, H.*; Nagai, Haruyasu; Sagara, Hiroshi*; Han, C. Y.*
Annals of Nuclear Energy, 141, p.107292_1 - 107292_9, 2020/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Atmospheric dispersion simulations can provide crucial information to assess radioactive plumes in the environment for nuclear emergency preparedness. However, it is a difficult and time-consuming task to make simulations assuming many possible scenarios and to derive data from a vast number of results. Therefore, an interface was developed to assist users in conveying characteristics of plumes from simulation results. The interface uses a large database that contains WSPEEDI-II simulations for the first 20-days of radioactive release from the Fukushima Daiichi Nuclear Power Plant, and it displays essential quantitative data to the user from the database. The user may conduct sensitivity analysis with the help of the interface by changing release condition to generate many different case scenarios.
Terada, Hiroaki; Nagai, Haruyasu; Tanaka, Atsunori*; Tsuzuki, Katsunori; Kadowaki, Masanao
Journal of Nuclear Science and Technology, 57(6), p.745 - 754, 2020/06
Times Cited Count:10 Percentile:73.46(Nuclear Science & Technology)We have estimated source term and analyzed processes of atmospheric dispersion of radioactive materials released during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident by the Worldwide version of System for Environmental Emergency Dose Information. On the basis of this experience, we developed an dispersion calculation method that can respond to various needs in a nuclear emergency and provide useful information for emergency-response planning. By this method, if a release point is known, it is possible to immediately obtain the prediction results by applying provided source term to the database of dispersion-calculation results prepared in advance. With this function, it is easy to compare results by applying various source term with monitoring data, and to find out the optimum source term, which was applied for the source term estimation of the FDNPS accident. By performing this calculation with past meteorological-analysis data, it is possible to immediately get dispersion-calculation results for various source term and meteorological conditions. This database can be used for pre-accident planning, such as optimization of a monitoring plan and understanding of events to be supposed in considering emergency countermeasures.