Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 56

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys

Suzudo, Tomoaki; Takamizawa, Hisashi; Nishiyama, Yutaka; Caro, A.*; Toyama, Takeshi*; Nagai, Yasuyoshi*

Journal of Nuclear Materials, 540, p.152306_1 - 152306_10, 2020/11

Spinodal decomposition in thermally aged Fe-Cr alloys leads to significant hardening, which is the direct cause of the so-called 475C-embrittlement. To illustrate how spinodal decomposition induces hardening by atomistic interactions, we conducted a series of numerical simulations as well as reference experiments. The numerical results indicated that the hardness scales linearly with the short-range order (SRO) parameter, while the experimental result reproduced this relationship within statistical error. Both seemingly suggest that neighboring Cr-Cr atomic pairs essentially cause hardening, because SRO is by definition uniquely dependent on the appearance probability of such pairs. A further numerical investigation supported this notion, as it suggests that the dominant cause of hardening is the pinning effect of dislocations passing over such Cr-Cr pairs.

Journal Articles

${it In situ}$ WB-STEM observation of dislocation loop behavior in reactor pressure vessel steel during post-irradiation annealing

Du, Y.*; Yoshida, Kenta*; Shimada, Yusuke*; Toyama, Takeshi*; Inoue, Koji*; Arakawa, Kazuto*; Suzudo, Tomoaki; Milan, K. J.*; Gerard, R.*; Onuki, Somei*; et al.

Materialia, 12, p.100778_1 - 100778_10, 2020/08

In order to ensure the integrity of the reactor pressure vessel in the long term, it is necessary to understand the effects of irradiation on the materials. In this study, irradiation-induced dislocation loops were observed in neutron-irradiated reactor pressure vessel specimens during annealing using our newly developed WB-STEM. It was confirmed that the proportion of $$<100>$$ loops increased with increasing annealing temperature. We also succeeded in observing the phenomenon that two $$frac{1}{2}$$$$<111>$$ loops collide into a $$<100>$$ loop. Moreover, a phenomenon in which dislocation loops decorate dislocations was also observed, and the mechanism was successfully explained by molecular dynamics simulation.

Journal Articles

Predoping effects of boron and phosphorous on arsenic diffusion along grain boundaries in polycrystalline silicon investigated by atom probe tomography

Takamizawa, Hisashi; Shimizu, Yasuo*; Inoue, Koji*; Nozawa, Yasuko*; Toyama, Takeshi*; Yano, Fumiko*; Inoue, Masao*; Nishida, Akio*; Nagai, Yasuyoshi*

Applied Physics Express, 9(10), p.106601_1 - 106601_4, 2016/10

 Times Cited Count:0 Percentile:100(Physics, Applied)

Journal Articles

The Two-step nucleation of G-phase in ferrite

Matsukawa, Yoshitaka*; Takeuchi, Tomoaki; Kakubo, Yuta*; Suzudo, Tomoaki; Watanabe, Hideo*; Abe, Hiroaki*; Toyama, Takeshi*; Nagai, Yasuyoshi*

Acta Materialia, 116, p.104 - 113, 2016/09

 Times Cited Count:40 Percentile:3.95(Materials Science, Multidisciplinary)

Atom probe tomography (APT) and TEM were combined for identifying the stage at which solute clusters transform into compounds crystallographically distinct from the matrix, in the precipitation of the G-phase (Ni$$_{16}$$Si$$_{7}$$Mn$$_{6}$$) from ferrite solid solution subjected to isothermal annealing at 673 K. Based on a systematic analysis of solute clusters as a function of annealing time, the nucleation of the G-phase was found to occur via a two-step process. Moreover, the structural change was found to occur via another two-step process. There was a time lag between the end of cluster growth to become a critical size and the start of the structural change. During the incubation period solute enrichment occurred inside the clusters without further size growth, indicating that the nucleation of the G-phase occurs at the critical size with a critical composition. Judging from the results of APT, TEM and the simulation of electron diffraction patterns, the critical composition was estimated to be Ni$$_{16}$$Si$$_{3.5}$$(Fe,Cr)$$_{3.5}$$Mn$$_{6}$$.

Journal Articles

Hardening in thermally-aged Fe-Cr binary alloys; Statistical parameters of atomistic configuration

Suzudo, Tomoaki; Nagai, Yasuyoshi*; Schwen, D.*; Caro, A.*

Acta Materialia, 89, p.116 - 122, 2015/05

 Times Cited Count:6 Percentile:54.39(Materials Science, Multidisciplinary)

By exploiting Monte Carlo methodology and molecular dynamics, we computationally simulate the spinodal decomposition of iron-chromium binary alloys and analyze the relationship between the increase of yield stress induced by the phase separation phenomenon, and statistical parameters of the atomistic configuration. We successfully model the experimentally-discovered proportional relationship between the hardness and the variation parameter (or V), and also found that the adequacy of the parameter V as an empirical indicator of hardening is limited, because it does not properly capture short-range atomistic configurations that influence the hardening. We suggest that the short-range-order parameter has more potential to become universal descriptor of the phenomenon.

Journal Articles

Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels

Takeuchi, Tomoaki; Kakubo, Yuta*; Matsukawa, Yoshitaka*; Nozawa, Yasuko*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Nishiyama, Yutaka; Katsuyama, Jinya; Yamaguchi, Yoshihito; Onizawa, Kunio; et al.

Journal of Nuclear Materials, 452(1-3), p.235 - 240, 2014/09

 Times Cited Count:23 Percentile:6.26(Materials Science, Multidisciplinary)

Microstructures and hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to the thermal aging at 400 $$^{circ}$$C for 100-10,000 h were investigated using atom probe tomography and nanoindentation technique. The Cr concentration fluctuation in the $$delta$$-ferrite phase caused by spinodal decomposition rapidly progressed by the 100 h aging while NiSiMn clusters increased in number density at 2,000 h and coarsened at 10,000 h. The hardness of the $$delta$$-ferrite phase also rapidly increased at the short aging time. The Cr concentration fluctuation and the hardness were in good correlation with the degree of the Cr concentration fluctuation rather than the formation of the NiSiMn clusters. These results strongly suggested that the dominant factor of the hardening of the $$delta$$-ferrite phase by the thermal aging was Cr spinodal decomposition.

Journal Articles

Effects of neutron irradiation on microstructures and hardness of stainless steel weld-overlay cladding of nuclear reactor pressure vessels

Takeuchi, Tomoaki; Kakubo, Yuta*; Matsukawa, Yoshitaka*; Nozawa, Yasuko*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Nishiyama, Yutaka; Katsuyama, Jinya; Yamaguchi, Yoshihito; Onizawa, Kunio

Journal of Nuclear Materials, 449(1-3), p.273 - 276, 2014/06

 Times Cited Count:13 Percentile:17.9(Materials Science, Multidisciplinary)

Microstructural changes and hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to the neutron irradiation with a dose of 7.2 $$times$$ 10$$^{19}$$n cm$$^{-2}$$ (E $$>$$ 1 MeV) and a flux of 1.1 $$times$$ 10$$^{13}$$n cm$$^{-2}$$ s$$^{-1}$$ at 290$$^{circ}$$C were investigated by atom probe tomography and with nanoindentation technique. In order to isolate the effect of the irradiation, we compared the results of the measurements of the irradiated sample with that of the aged one at 300$$^{circ}$$C for the time equivalent to the irradiation. The Cr concentration fluctuation was enhanced in the $$delta$$-ferrite phase of the irradiated sample. In addition, the enhancement of the concentration fluctuation of Si, which was not observed in the aged sample, was observed. The hardening at the $$delta$$-ferrite phase was occurred by both the irradiation and the aging. However, the former was more than that expected from the Cr concentration fluctuation, which suggested that the Si concentration fluctuation and irradiation-induced defects were possible origins of the additional hardening.

Journal Articles

Effect of neutron irradiation on the microstructure of the stainless steel electroslag weld overlay cladding of nuclear reactor pressure vessels

Takeuchi, Tomoaki; Kakubo, Yuta*; Matsukawa, Yoshitaka*; Nozawa, Yasuko*; Nagai, Yasuyoshi*; Nishiyama, Yutaka; Katsuyama, Jinya; Onizawa, Kunio; Suzuki, Masahide

Journal of Nuclear Materials, 443(1-3), p.266 - 273, 2013/11

 Times Cited Count:10 Percentile:28.29(Materials Science, Multidisciplinary)

Investigation on irradiation effects of weld-overlay claddings is necessary for safety assessment of reactor pressure vessels. We investigated microstructural changes in the cladding, which was composed of about 90% austenite and 10% $$delta$$-ferrite phases, subjected to the neutron irradiation to 7.2$$times$$10$$^{19}$$ n/cm$$^{2}$$ at 290$$^{circ}$$C, by 3D atom probe tomography technique. In the ferrite phase, the amplitude of the Cr and Si concentration fluctuation was increased by the irradiation and Ni and Mn concentration fluctuations were newly occurred. In the austenite phase, $$gamma$$'(Ni$$_{3}$$Si) -like clusters were formed. In contrast, the results of our previous work on the cladding subjected to thermal aging showed the amplitude of the Cr fluctuation was significantly increased and G (Ni-Si-Mn) phase was formed in the ferrite phase. Moreover, no changes were observed in the austenite by the aging.

Journal Articles

Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

Takeuchi, Tomoaki; Kameda, Jun*; Nagai, Yasuyoshi*; Toyama, Takeshi*; Nishiyama, Yutaka; Onizawa, Kunio

Journal of Nuclear Materials, 415(2), p.198 - 204, 2011/08

 Times Cited Count:27 Percentile:7.62(Materials Science, Multidisciplinary)

Microstructural changes by thermal aging in stainless steel weld overlay cladding of nuclear reactor pressure vessels were investigated using atom probe tomography. The cladding material was composed of about 90% austenite phase and 10% $$delta$$-ferrite phase and thermally aged at 400$$^{circ}$$C for 10,000 h. In the ferrite phase, the thermal aging increased a fluctuation of Cr concentration due to spinodal decomposition and caused the precipitation of G phase with chemical composition of Ni:Si:Mn = 16:7:6. Moreover, significant hardening of the ferrite phase was induced by the thermal aging. On the other hand, the thermal aging did not affect on the microstructures and the hardness in the austenite phase, which indicates the microstructural changes were responsible for the hardening in the ferrite phase. The analyses of the magnitude of the spinodal decomposition and the hardness implied that the spinodal decomposition was the main cause of the hardening.

Journal Articles

Effects of chemical composition and dose on microstructure evolution and hardening of neutron-irradiated reactor pressure vessel steels

Takeuchi, Tomoaki; Kuramoto, Akira*; Kameda, Jun*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Hasegawa, Masayuki*; Okubo, Tadakatsu*; Yoshiie, Toshimasa*; Nishiyama, Yutaka; Onizawa, Kunio

Journal of Nuclear Materials, 402(2-3), p.93 - 101, 2010/07

 Times Cited Count:45 Percentile:4.06(Materials Science, Multidisciplinary)

This study reports the effects of the composition and dose on microstructure evolution and hardening in high- and low-impurity A533B-1 steels neutron-irradiated in a wide range from 0.32 to 9.9 $$times$$ 10$$^{19}$$ n cm$$^{-2}$$ (E $$>$$ 1 MeV) under a constant high flux at JMTR. The early hardening was found to be caused by mainly matrix defects. The gradual hardening after middle stage of irradiation was found to be caused by the formation of Cu rich clusters (CRCs) and Mn-Ni-Si rich clusters (MNSCs), respectively, in the high- and low-impurity steels. By applying a RB model, it was found that the dislocation-pinning strength of the CRCs and MNSCs is almost the same. Moreover, the high-impurity steel subjected to the highest dose revealed the formation of MNSCs.

Journal Articles

Interlaboratory comparison of positron annihilation lifetime measurements

Ito, Kenji*; Oka, Toshitaka*; Kobayashi, Yoshinori*; Shirai, Yasuharu*; Wada, Kenichiro*; Matsumoto, Masataka*; Fujinami, Masanori*; Hirade, Tetsuya; Honda, Yoshihide*; Hosomi, Hiroyuki*; et al.

Materials Science Forum, 607, p.248 - 250, 2009/00

So far no standard procedure for the positron annihilation lifetime (PAL) technique has been established. A lack of the standards has led to difficulty in ensuring the equivalency and reliability of data from different laboratories. As a first, we conducted an interlaboratory comparison of PAL measurements for metal, polymer and silica glass with agreed procedures for data recording and analysis. The PAL data recorded at different laboratories were analyzed with a single lifetime component for the metal sample and with three components for the others, respectively. Based on the results of the reported positron and ortho-positronium lifetimes, the possible sources of the uncertainties in the PAL measurements are discussed. To reduce the effect of scattered $$gamma$$ rays, a lead shield was placed between the detectors. The uncertainty was significantly decreased, signifying that placing lead shields between the detectors effectively reduced the false signals due to the scattered $$gamma$$ rays.

Journal Articles

Impact of advanced experimental method on nuclear materials R&D; The Progress of technology has brought about a deep understanding !

Kimura, Akihiko*; Nagai, Yasuyoshi*; Fujii, Katsuhiko*; Nishiyama, Yutaka; Soneda, Naoki*

Nippon Genshiryoku Gakkai-Shi, 50(10), p.630 - 633, 2008/10

no abstracts in English

Journal Articles

Effects of neutron-irradiation-induced intergranular phosphorus segregation and hardening on embrittlement in reactor pressure vessel steels

Nishiyama, Yutaka; Onizawa, Kunio; Suzuki, Masahide; Anderegg, J. W.*; Nagai, Yasuyoshi*; Toyama, Takeshi*; Hasegawa, Masayuki*; Kameda, Jun*

Acta Materialia, 56(16), p.4510 - 4521, 2008/09

 Times Cited Count:48 Percentile:8.94(Materials Science, Multidisciplinary)

The effects of intergranular P segregation and hardening on the ductile-to-brittle transition temperature (DBTT) in several neutron-irradiated reactor pressure vessel steels with different bulk contents of P and Cu have been investigated using a scanning Auger microbe, a local electrode atom probe and positron annihilation spectroscopy. Increasing the neutron fluence at 563 K promotes intergranular P segregation. The content of P more significantly affects irradiation hardening than that of Cu due to distinct formation of P-rich precipitates arising from the stabilization of vacancies. Analyzing the correlations between the P segregation, hardening, fraction of intergranular fracture and DBTT, it is found neutron irradiation mitigates an embrittling effect of segregated P, and therefore the hardening more strongly affects the DBTT shift than the P segregation.

Journal Articles

Interlaboratory comparison of positron annihilation lifetime measurements for synthetic fused silica and polycarbonate

Ito, Kenji*; Oka, Toshitaka*; Kobayashi, Yoshinori*; Shirai, Yasuharu*; Wada, Kenichiro*; Matsumoto, Masataka*; Fujinami, Masanori*; Hirade, Tetsuya; Honda, Yoshihide*; Hosomi, Hiroyuki*; et al.

Journal of Applied Physics, 104(2), p.026102_1 - 026102_3, 2008/07

 Times Cited Count:37 Percentile:18.72(Physics, Applied)

Interlaboratory comparison of positron annihilation lifetime measurements using synthetic fused silica and polycarbonate was conducted with the participation of 12 laboratories. By regulating procedures for the measurement and data analysis the uncertainties of the positron lifetimes obtained at different laboratories were significantly reduced in comparison with those reported in the past.

JAEA Reports

Analyses of core Shroud materials by three dimensional atom probe (Contract research)

Kondo, Keietsu; Nemoto, Yoshiyuki; Miwa, Yukio; Kaji, Yoshiyuki; Tsukada, Takashi; Nagai, Yasuyoshi*; Hasegawa, Masayuki*; Okubo, Tadakatsu*; Hono, Kazuhiro*

JAEA-Research 2006-013, 39 Pages, 2006/12

JAEA-Research-2006-013.pdf:4.57MB

There has been an increasing number of stress corrosion cracking (SCC) incidents on low carbon austenitic stainless steels used in boiling water reactor (BWR) environments. To reveal the acceleration factor of intergranular crack propagation from the viewpoint of solute distribution in stainless steels, the material extracted from a core shroud of Japanese BWR was analyzed by the three dimensional atom probe (3DAP), which has the highest spatial resolution among the various microanalytical techniques. It was revealed by statistical analysis on 3DAP data that solute elements, such as Fe, Cr, Ni, Mo, Mn, Si, are randomly distributed in matrix of the shroud material. This result means that solute was not segregated or precipitated and was not form spinodal decomposition during the service. The concentration profile in the vicinity of grain boundary obtained from 3DAP dataset showed the random distribution of Cr. This result shows that degradation of the corrosion resistance induced by depletion of Cr was not responsible for the crack propagation along grain boundaries in low carbon stainless steel. On the other hand, enrichment of Mo and Si was observed at grain boundary. The width of the enriched zone was about 2 nm across the grain boundary, and the concentration of those elements could be much higher than the concentration obtained by field emission transmission electron microscopy/energy dispersive X-ray spectroscopy (FE-TEM/EDS). Therefore, it is necessary to study about the effects of enrichment of Mo and Si as a potential contributor to SCC.

Journal Articles

Kinetics of irradiation-induced Cu precipitation in nuclear reactor pressure vessel steels

Nagai, Yasuyoshi*; Toyama, Takeshi*; Nishiyama, Yutaka; Suzuki, Masahide; Tang, Z.*; Hasegawa, Masayuki*

Applied Physics Letters, 87(26), p.261920_1 - 261920_3, 2005/12

 Times Cited Count:24 Percentile:32.92(Physics, Applied)

no abstracts in English

Oral presentation

Comparison of positron annihilation measurements of quartz glass and polycarbonate

Kobayashi, Yoshinori*; Ito, Kenji*; Oka, Toshitaka*; Sakaki, Koji*; Shirai, Yasuharu*; Honda, Yoshihide*; Shimazu, Akira*; Fujinami, Masanori*; Hirade, Tetsuya; Saito, Haruo*; et al.

no journal, , 

For making a standard sample of positron annihilation measurement, quartz glass and polycarbonate were measured with 12 apparatus at AIST, Chiba Univ., Tokyo Univ., Tsukuba Univ., Touhoku Univ., Tokyo Gakugei Univ. JAEA, Nitto Denko, and Toray Research Center. By regulating procedure for the measurement and data analysis the uncertainties of the positron annihilation lifetime obtained at different laboratories were significantly reduced.

Oral presentation

Effects of neutron-irradiation induced intergranular phosphorus segregation and hardening on embrittlement in reactor pressure vessel steels

Nishiyama, Yutaka; Onizawa, Kunio; Suzuki, Masahide; Nagai, Yasuyoshi*; Toyama, Takeshi*; Hasegawa, Masayuki*; Kameda, Jun*

no journal, , 

The effects of intergranular P segregation and hardening on the ductile-to-brittle transition temperature (DBTT) in several neutron-irradiated reactor pressure vessel steels with different bulk contents of P and Cu have been investigated using a scanning Auger microbe, a local electrode atom probe and positron annihilation spectroscopy. Increasing the neutron fluence at 563 K promotes intergranular P segregation. The content of P significantly affects irradiation hardening due to distinct formation of P-rich precipitates arising from the stabilization of vacancies. Analyzing the correlations between the P segregation, hardening, fraction of intergranular fracture and DBTT, it is found neutron irradiation mitigates an embrittling effect of segregated P, and therefore the hardening more strongly affects the DBTT shift than the P segregation.

Oral presentation

Interlaboratry comparison of psotitron annihilation lifetime measurement

Ito, Kenji*; Oka, Toshitaka*; Kobayashi, Yoshinori*; Shirai, Yasuharu*; Wada, Kenichiro*; Matsumoto, Masataka*; Fujinami, Masanori*; Hirade, Tetsuya; Honda, Yoshihide*; Hosomi, Hiroyuki*; et al.

no journal, , 

So far no standard procedure for the positron annihilation lifetime (PAL) technique has been established. A lack of the standards has led to difficulty in ensuring equivalency and reliability of data from different laboratories. Recently, as a first step toward the standardization of the PAL technique, we conducted an interlaboratory comparison of PAL measurements for fused silica, polycarbonate and metal with agreed procedures for data recording and analysis. Based on the results of the reported lifetimes, possible sources of the uncertainties in the PAL measurements is probably caused by the backscattered $$gamma$$-rays by other detectors. We succeeded to show that inserting shields between detectors can reduce the uncertainty.

56 (Records 1-20 displayed on this page)