Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 24

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Negative muon capture ratios for nitrogen oxide molecules

Ninomiya, Kazuhiko*; Ito, Takashi; Higemoto, Wataru; Kawamura, Naritoshi*; Strasser, P.*; Nagatomo, Takashi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Kita, Makoto*; Shinohara, Atsushi*; et al.

Journal of Radioanalytical and Nuclear Chemistry, 319(3), p.767 - 773, 2019/03

 Times Cited Count:12 Percentile:74.50(Chemistry, Analytical)

Journal Articles

Tuning of ultra-slow muon transport system

Adachi, Taihei*; Ikedo, Yutaka*; Nishiyama, Kusuo*; Yabuuchi, Atsushi*; Nagatomo, Takashi*; Strasser, P.*; Ito, Takashi; Higemoto, Wataru; Kojima, Kenji*; Makimura, Shunsuke*; et al.

JPS Conference Proceedings (Internet), 8, p.036017_1 - 036017_4, 2015/09

Journal Articles

Nondestructive elemental depth-profiling analysis by muonic X-ray measurement

Ninomiya, Kazuhiko*; Kubo, Kenya*; Nagatomo, Takashi*; Higemoto, Wataru; Ito, Takashi; Kawamura, Naritoshi*; Strasser, P.*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Suzuki, Takao*; et al.

Analytical Chemistry, 87(9), p.4597 - 4600, 2015/05

 Times Cited Count:28 Percentile:69.89(Chemistry, Analytical)

Journal Articles

Erosion of $$N$$=20 shell in $$^{33}$$Al investigated through the ground-state electric quadrupole moment

Shimada, Kenji*; Ueno, Hideki*; Neyens, G.*; Asahi, Koichiro*; Balabanski, D. L.*; Daugas, J. M.*; Depuydt, M.*; De Rydt, M.*; Gaudefroy, L.*; Gr$'e$vy, S.*; et al.

Physics Letters B, 714(2-5), p.246 - 250, 2012/08

 Times Cited Count:7 Percentile:40.18(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

Development of nondestructive and quantitative elemental analysis method using calibration curve between muonic X-ray intensity and elemental composition in bronze

Ninomiya, Kazuhiko; Nagatomo, Takashi*; Kubo, Kenya*; Ito, Takashi; Higemoto, Wataru; Kita, Makoto*; Shinohara, Atsushi*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; et al.

Bulletin of the Chemical Society of Japan, 85(2), p.228 - 230, 2012/02

 Times Cited Count:29 Percentile:61.23(Chemistry, Multidisciplinary)

Elemental analysis of bulk materials can be performed by detecting the high-energy X-rays emitted from muonic atoms. Muon irradiation of standard bronze samples was performed to determine the muon capture probabilities for the elemental components from muonic X-ray spectra. Nondestructive elemental analysis of an ancient Chinese coin was also performed.

Journal Articles

Development of elemental analysis by muonic X-ray measurement in J-PARC

Ninomiya, Kazuhiko; Nagatomo, Takashi*; Kubo, Kenya*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Saito, Tsutomu*; Higemoto, Wataru

Journal of Physics; Conference Series, 225, p.012040_1 - 012040_4, 2010/06

 Times Cited Count:16 Percentile:96.72(Physics, Applied)

Muon irradiation and muonic X-ray detection can be applied to non-destructive elemental analysis. In this study, in order to develop the elemental analysis by muonic X-ray measurement we constructed a new X-ray measuring system in J-PARC muon facility. We performed muon irradiation for Tempo-koban (Japanese old coin) for test experiment of elemental analysis.

Journal Articles

Precision measurement of the electric quadrupole moment of $$^{31}$$Al and determination of the effective proton charge in the sd-shell

De Rydt, M.*; Neyens, G.*; Asahi, Koichiro*; Balabanski, D. L.*; Daugas, J. M.*; Depuydt, M.*; Gaudefroy, L.*; Gr$'e$vy, S.*; Hasama, Yuka*; Ichikawa, Yuichi*; et al.

Physics Letters B, 678(4), p.344 - 349, 2009/07

 Times Cited Count:17 Percentile:69.15(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

Ion acceleration using temporally-controlled high-intensity laser pulses

Yogo, Akifumi; Daido, Hiroyuki; Mori, Michiaki; Kiriyama, Hiromitsu; Bulanov, S. V.; Bolton, P. R.; Esirkepov, T. Z.; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; et al.

Reza Kenkyu, 37(6), p.449 - 454, 2009/06

The acceleration of protons driven by a high-intensity laser is comprehensively investigated via control of the target density by using ASE just before the time of the main-laser interaction. Two cases were investigated for which the ASE intensity differed by three orders of magnitude: In the low contrast case the beam centre for higher energy protons is shifted closer to the laser-propagation direction of 45$$^{circ}$$, while the center of lower-energy beam remains near the target normal direction. Particle-in-cell simulations reveal that the characteristic proton acceleration is due to the quasistatic magnetic field on the target rear side with the magnetic pressure sustaining a charge separation electrostatic field.

Journal Articles

Simultaneous generation of UV harmonics and protons from a thin-foil target with a high-intensity laser

Sagisaka, Akito; Daido, Hiroyuki; Pirozhkov, A. S.; Ma, J.-L.; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Mori, Michiaki; Nishiuchi, Mamiko; Kawachi, Tetsuya; et al.

IEEE Transactions on Plasma Science, 36(4), p.1812 - 1816, 2008/08

 Times Cited Count:4 Percentile:16.87(Physics, Fluids & Plasmas)

We observe UV harmonics and protons with a thin-foil target irradiated with a high-intensity Ti:sapphire laser. The laser intensity dependency of UV harmonics and proton signal is measured by varying the distance between the target surface and the best focus of the laser beam. In the case of appropriate condition for proton generation with a maximum energy of $$sim$$2.7 MeV, the weak broad spectrum in the UV region is generated. The UV harmonics up to fourth-order are generated as the target is moved away from the best focus position. In this condition the maximum energy of protons is reduced to $$sim$$1 MeV.

Journal Articles

Laser ion acceleration via control of the near-critical density target

Yogo, Akifumi; Daido, Hiroyuki; Bulanov, S. V.; Nemoto, Koshichi*; Oishi, Yuji*; Nayuki, Takuya*; Fujii, Takashi*; Ogura, Koichi; Orimo, Satoshi; Sagisaka, Akito; et al.

Physical Review E, 77(1), p.016401_1 - 016401_6, 2008/01

 Times Cited Count:117 Percentile:97.22(Physics, Fluids & Plasmas)

The duration-controlled amplified spontaneous emission with intensity of $$10^{13}$$ W/cm$$^2$$ is used to convert a 7.5 $$mu$$m thick polyimide foil into a near-critical plasma, in which the $$p$$-polarized, 45 fs, $$10^{19}$$ W/cm$$^2$$ laser pulse generates 3.8 MeV protons, emitted at some angle between the target normal and the laser propagation direction of 45$$^{circ}$$. Particle-in-cell simulations reveal that the efficient proton acceleration is due to generation of the quasistatic magnetic field on the target rear side with the magnetic pressure inducing and sustaining a charge separation electrostatic field.

Journal Articles

Laser-driven proton acceleration from a near-critical density target

Yogo, Akifumi; Daido, Hiroyuki; Bulanov, S. V.; Esirkepov, T. Z.; Nemoto, Koshichi*; Oishi, Yuji*; Nayuki, Takuya*; Fujii, Takashi*; Ogura, Koichi; Orimo, Satoshi; et al.

Journal of Physics; Conference Series, 112, p.042034_1 - 042034_4, 2008/00

 Times Cited Count:1 Percentile:54.56(Physics, Fluids & Plasmas)

In this work, we present a new method to enhance the proton generation by a 10$$^5$$-contrast laser. High-energy protons up to 3.8 MeV are observed with 7.5-$$mu$$m-thick insulator (Polyimide) target irradiated by a laser pulse having energy of 0.8 J and an intensity of 10$$^{19}$$-W/cm$$^2$$. Using two time-of-flight (TOF) spectrometers simultaneously in different directions, we measure the direction dependency of proton-energy spectra. As a result, we find that high-energy component of proton beam is shifted away from the target normal toward the laser-propagation direction, when the laser is focused with 45$$^{circ}$$ incident angle. The TOF measurements over 130 laser shots confirm that the generation of the high-energy protons, which are steered away from the target normal, depends strongly on the laser-focusing condition.

Journal Articles

Measurement of the spin and magnetic moment of $$^{23}$$Al

Ozawa, Akira*; Matsuta, Kensaku*; Nagatomo, Takashi*; Mihara, Mototsugu*; Yamada, Kazunari*; Yamaguchi, Takayuki*; Otsubo, Takashi*; Momota, Sadao*; Izumikawa, Takuji*; Sumikama, Toshiyuki*; et al.

Physical Review C, 74(2), p.021301_1 - 021301_4, 2006/08

 Times Cited Count:43 Percentile:88.73(Physics, Nuclear)

no abstracts in English

Oral presentation

Pressure dependence of muon cascading process for nitrogen oxide gas samples

Ninomiya, Kazuhiko; Ito, Takashi; Higemoto, Wataru; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Miura, Taichi*; Kita, Makoto*; Shinohara, Atsushi*; et al.

no journal, , 

Muonic atom is an atomic system that has one negatively charged muon instead of an electron. Muonic atom is formed when a negative muon is stopped in matter. There are many studies of muonic atom formation by measuring muonic X-rays emitted after formation of muonic atom. From these studies, "molecular effect" on muonic atom formation becomes clear; different muonic X-ray structures are obtained from muon irradiations between allotropes. In addition, muonic X-ray intensity patterns are also influenced by density of muon irradiation sample (density effect). The quantitative examination of molecular and density effect is essential to investigate muonic atom formation process by measuring muonic X-rays. In this study, we investigated density effect of muonic X-ray structure for nitrogen oxide samples.

Oral presentation

Formation process of muonic atom for low pressure gaseous samples

Ninomiya, Kazuhiko; Ito, Takashi; Higemoto, Wataru; Nagatomo, Takashi*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Miura, Taichi; Kita, Makoto*; et al.

no journal, , 

We have been studying on the formation process of muonic atom by measuring muonic X-rays. It is known that muonic X-ray intensities are changed by the state of muon capturing atom. These intensities also influenced by the density of the sample itself. There are many studies to investigate muonic atom formation by measuring muonic X-ray intensities, however, the pressure dependence of muonic X-ray intensities have not been examined well. In this study, we investigate the pressure dependence of muonic X-ray intensities for NO, N$$_{2}$$O and NO$$_{2}$$ samples below 1 bar pressure conditions.

Oral presentation

Pressure dependence of muonic X-ray structures for dinitrogen oxide gas samples

Ninomiya, Kazuhiko; Ito, Takashi; Higemoto, Wataru; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; Miura, Taichi*; Kita, Makoto*; Shinohara, Atsushi*; et al.

no journal, , 

A muonic atom is an atomic system that has one negatively charged muon instead of an electron. There are many studies related to the formation process of muonic atom by measuring muon characteristic X-rays. It is known that muon characteristic X-ray intensities are influenced by the density of the sample itself. However, most of previous studies did not consider this effect. In this study, we measured muon characteristic X-rays for dinitrogen mono-oxide with 0.1-1.0 atm. The same muonic X-ray intensities were obtained below 0.2 atm condition. This result means the density effect is neglectable below 0.2 atm for dinitrogen mono-oxide gas.

Oral presentation

Negative muon coulomb capture on nitrogen oxide molecules

Ninomiya, Kazuhiko; Ito, Takashi; Higemoto, Wataru; Kita, Makoto*; Shinohara, Atsushi*; Nagatomo, Takashi*; Kubo, Kenya*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; et al.

no journal, , 

A muonic atom is an atomic system that contains one negatively charged muon (muon is one of elementally particles) instead of an electron. When a muon is injected in material, the muon is slowing down by collisions with atomic electrons, and then low energy muon is captured on the coulomb field of a nucleus. As a result, the muon forms an atomic orbit around the nucleus, that is, a muonic atom is formed. It is considered that a muon capture phenomenon proceeds through muon collision and replacement with loosely binding electron, however the intrinsic mechanism of muon capture have not been investigated yet. In this study, we examine the formation processes of muonic atoms for nitrogen oxide samples (NO, N$$_{2}$$O and NO$$_{2}$$) by measuring muon characteristic X-rays (muonic X-rays) emitted after formation of muonic atoms.

Oral presentation

Negative muon initial state captured in nitrogen oxide

Ninomiya, Kazuhiko; Ito, Takashi; Higemoto, Wataru; Kita, Makoto*; Shinohara, Atsushi*; Nagatomo, Takashi*; Kubo, Kenya*; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; et al.

no journal, , 

Muonic atom is an atom like system that has one negatively charged muon instead of an electron. It is known that the formation process of muonic atom is influenced by the structure of muon capturing molecule (molecular effect). In this study, we performed systematic muon irradiation for low pressure nitrogen oxide samples and discuss the molecular effect on muon capture phenomena.

Oral presentation

Generation of high-energy proton and electromagnetic waves with a high-intensity laser

Sagisaka, Akito; Daido, Hiroyuki; Pirozhkov, A. S.; Ma, J.-L.; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Mori, Michiaki; Nishiuchi, Mamiko; Kawachi, Tetsuya; et al.

no journal, , 

High-intensity laser and thin-foil interactions produce high energy ions, electrons, X-ray, high-order harmonics, and THz radiation. High-energy protons driven by the high-intensity laser is paid attention as a compact ion source for medical application. The simultaneous generation of the protons and THz or harmonics will provide us high-density plasma diagnostic or unique pump-probe techniques. We use a Ti:sapphire laser system (JLITE-X) in JAEA for THz radiation. The laser beam is focused by an off-axis parabolic mirror at the 5 $$mu$$m thick Ti target. We observe simultaneously both the high-energy proton and THz radiation by changing the duration of ASE preceding the main pulse. We use a Ti:sapphire laser system in CRIEPI for harmonic generation. The laser beam is focused by an off-axis parabolic mirror at the 7.5 $$mu$$m thick polyimide target surface. The high-energy protons and UV harmonics are observed at the target is moved away from the best focus.

Oral presentation

Investigation of muon atomic capture ratio between cupper and tin in bronze

Ninomiya, Kazuhiko; Nagatomo, Takashi*; Kubo, Kenya*; Kita, Makoto*; Shinohara, Atsushi*; Ito, Takashi; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; et al.

no journal, , 

We determined muon capture probability for cupper, tin and lead atoms in bronze from muonic X-ray measurement. We also performed muon irradiation for old Chinese coin and determined contents of this sample.

Oral presentation

Development of elemental analysis by measuring muonic X-rays

Ninomiya, Kazuhiko; Nagatomo, Takashi*; Kubo, Kenya*; Kita, Makoto*; Shinohara, Atsushi*; Ito, Takashi; Strasser, P.*; Kawamura, Naritoshi*; Shimomura, Koichiro*; Miyake, Yasuhiro*; et al.

no journal, , 

It is expected that muon irradiation and muonic X-ray detection emitted after formation of muonic atom can be applied to non-destructive elemental analysis. In this study, we performed muon irradiation for old Chinese bronze coin at MUSE in J-PARC and determined contents of this sample.

24 (Records 1-20 displayed on this page)