Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

New injection bump power supply of the J-PARC RCS

Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki; Tobita, Norimitsu; Hayashi, Naoki; Kinsho, Michikazu; Irie, Yoshiro*; Okabe, Kota; Tani, Norio; Naito, Shingo*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1169 - 1174, 2015/09

The new injection bump power supply for the shift bump magnet of the beam injection sub-systems at the J-PARC (Japan Proton Accelerator Research Complex) 3-GeV RCS (Rapid Cycling Synchrotron) has been developed and manufactured. The power capacity of the new power supply was more than doubled with the injection beam energy upgrading of the LINAC (Linear Accelerator) from 181 MeV to 400 MeV. Furthermore, the low ripple noise on the output current was required to prevent the resonance of the RF shield loop at the ceramic duct with the excitation magnetic field. The power supply newly adopted a capacitor commutation method to form the trapezoid waveform pattern (bump waveform). This paper reports characteristic about the new power supply.

Journal Articles

Extra radiation hardening and microstructural evolution in F82H by high-dose dual ion irradiation

Ando, Masami; Wakai, Eiichi; Sawai, Tomotsugu; Matsukawa, Shingo; Naito, Akira*; Jitsukawa, Shiro; Oka, Keiichiro*; Tanaka, Teruyuki*; Onuki, Somei*

JAERI-Review 2004-025, TIARA Annual Report 2003, p.159 - 161, 2004/11

The objectives of this study are to evaluate radiation hardening on ion-irradiated F82H up to 100 dpa and to examine the extra component of radiation hardening due to implanted helium atoms (up to $$sim$$3000 appmHe) in F82H under ratio of 0, 10, 100 appmHe/dpa.The ion-beam irradiation experiment was carried out at the TIARA facility of JAERI. Specimens were irradiated at 633 K by 10.5 MeV Fe ions with/without 1.05 MeV He ions. Micro-indentation tests were performed at loads to penetrate about 0.40 mm in the irradiated specimens using an UMIS-2000. The results are summarized as follows:1) As a result of the single irradiated F82H, the micro-hardness tended to increase about 30 dpa. 2) The extra radiation hardening was obviously caused by co-implanted helium atoms more than 1000 appm in F82H irradiated at 633 K. 3) In the dual-beam (100 appmHe/dpa) irradiated microstructure, nano-voids and fine defects were observed. It is suggested that the formation of nano-voids causes the extra radiation hardening by helium co-implantation.

Journal Articles

Heating and non-inductive current drive by negative ion based NBI in JT-60U

Oikawa, Toshihiro; Ushigusa, Kenkichi; Forest, C. B.*; Nemoto, Masahiro; Naito, Osamu; Kusama, Yoshinori; Kamada, Yutaka; Tobita, Kenji; Suzuki, Shingo*; Fujita, Takaaki; et al.

Nuclear Fusion, 40(3Y), p.435 - 443, 2000/03

 Times Cited Count:41 Percentile:75.03(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Heating and non-inductive current drive by negative-ion based NBI in JT-60U

Oikawa, Toshihiro; Ushigusa, Kenkichi; Forest, C. B.*; Nemoto, Masahiro; Naito, Osamu; Kusama, Yoshinori; Kamada, Yutaka; Tobita, Kenji; Suzuki, Shingo*; Fujita, Takaaki; et al.

Fusion Energy 1998, Vol.2, p.551 - 558, 1998/10

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1