Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 30

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Incoherent neutron scattering and Terahertz time-domain spectroscopy on protein and hydration water

Nakagawa, Hiroshi; Yamamoto, Naoki*

Life (Internet), 13(2), p.318_1 - 318_15, 2023/02

 Times Cited Count:0 Percentile:49(Biology)

Incoherent neutron scattering and terahertz spectroscopy have approximately the same energy range of measurement. Since both techniques are used to study the dynamics of proteins and hydrated water, it is important to review the advantages and disadvantages of both techniques and the relevant literature. To the best of our knowledge, there is no review of both methods, and we believe that this review is of high value.

Journal Articles

Evaluation of power distribution calculation of the very high temperature reactor critical assembly (VHTRC) with Monte Carlo MVP3 code

Simanullang, I. L.*; Nakagawa, Naoki*; Ho, H. Q.; Nagasumi, Satoru; Ishitsuka, Etsuo; Iigaki, Kazuhiko; Fujimoto, Nozomu*

Annals of Nuclear Energy, 177, p.109314_1 - 109314_8, 2022/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Protein hydration and its freezing phenomena; Toward the application for cell freezing and frozen food storage

Yamamoto, Naoki*; Nakanishi, Masahiro*; Rajan, R.*; Nakagawa, Hiroshi

Biophysics and Physicobiology (Internet), 18, p.284 - 288, 2021/12

Water is an indispensable solvent for living things. $$sim$$60% of our body is composed of water, the lack of which causes lots of fatal problems. It has also been known that protein function is performed only when it accompanies water molecules around the surface, i.e. hydration water molecules. Therefore, it is essential to understand how water and biological component interact with each other in the view point of structure and dynamics. Freezing is a fundamental and simple phenomenon of water, and thus can be used as a probe for the purpose. Furthermore, preservation of cells and proteins under low temperature is crucial for numerous applications, which in turn triggers a myriad of undesirable consequences because of the freezing.

Journal Articles

Freezable and unfreezable hydration water; Distinct contributions to protein dynamics revealed by neutron scattering

Yamamoto, Naoki*; Kofu, Maiko; Nakajima, Kenji; Nakagawa, Hiroshi; Shibayama, Naoya*

Journal of Physical Chemistry Letters (Internet), 12(8), p.2172 - 2176, 2021/03

 Times Cited Count:8 Percentile:70.42(Chemistry, Physical)

Hydration water plays a crucial role for activating the protein dynamics required for functional expression. Yet, the details are not understood about how hydration water couples with protein dynamics. A temperature hysteresis of the ice formation of hydration water is a key phenomenon to understand which type of hydration water, unfreezable or freezable hydration water, is crucial for the activation of protein dynamics. Using neutron scattering, we observed a temperature-hysteresis phenomenon in the diffraction peaks of the ice of freezable hydration water, whereas protein dynamics did not show any temperature hysteresis. These results show that the protein dynamics is not coupled with freezable hydration water dynamics, and unfreezable hydration water is essential for the activation of protein dynamics.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

JAEA Reports

Report of summer holiday practical training 2019; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 2

Ishitsuka, Etsuo; Nakashima, Koki*; Nakagawa, Naoki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Matsuura, Hideaki*; et al.

JAEA-Technology 2020-008, 16 Pages, 2020/08

JAEA-Technology-2020-008.pdf:2.98MB

As a summer holiday practical training 2019, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the $$^{235}$$U enrichment and burnable poison of the fuel, which enables continuous operation for 30 years with thermal power of 5 MW, were studied by the MVP-BURN. As a result, it is clear that a fuel with $$^{235}$$U enrichment of 12%, radius of burnable poison and natural boron concentration of 1.5 cm and 2wt% are required. As a next step, the downsizing of core will be studied.

Journal Articles

Effects of irradiation induced Cu clustering on vickers hardness and electrical resistivity of Fe-Cu model alloys

Tobita, Toru; Nakagawa, Sho*; Takeuchi, Tomoaki; Suzuki, Masahide; Ishikawa, Norito; Chimi, Yasuhiro; Saito, Yuichi; Soneda, Naoki*; Nishida, Kenji*; Ishino, Shiori*; et al.

Journal of Nuclear Materials, 452(1-3), p.241 - 247, 2014/09

 Times Cited Count:15 Percentile:76.9(Materials Science, Multidisciplinary)

Three kinds of Fe-based model alloys, Fe-0.018 atomic percent (at.%) Cu, Fe-0.53at.%Cu, and Fe-1.06at.%Cu were irradiated with 2 MeV electrons up to the dose of 2$$times$$10$$^{-5}$$ dpa at 250$$^{circ}$$C. After the irradiation, the increase in Vickers hardness and the decrease in electrical resistivity were observed. The increase in hardness by electron irradiation is proportional to the product of the Cu contents and the square root of the electron dose. The decrease in electrical resistivity is proportional to the product of the square of Cu contents and the electron dose. Cu clustering in the materials with electron irradiation and thermal aging was observed by means of the three dimensional atom probes (3D-AP). The change in Vickers hardness and electrical resistivity is well correlated with the volume fraction of Cu clusters.

Journal Articles

Contribution to improvement of HTGR technology by using HTTR operation data

Nakagawa, Shigeaki; Tochio, Daisuke; Shinohara, Masanori; Nojiri, Naoki; Nishihara, Tetsuo; Goto, Minoru; Takamatsu, Kuniyoshi

Proceedings of 2009 International Congress on Advances in Nuclear Power Plants (ICAPP '09) (CD-ROM), p.9476_1 - 9476_6, 2009/05

Journal Articles

Research activities of Japan Nuclear Data Committee in fiscal years of 2003 and 2004

Igashira, Masayuki*; Watanabe, Yukinobu*; Fukahori, Tokio; Okumura, Keisuke; Katakura, Junichi; Chiba, Satoshi; Shibata, Keiichi; Yamano, Naoki*; Nakagawa, Tsuneo; Odano, Naoteru*; et al.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 6(1), p.85 - 96, 2007/03

This technical note summarizes research activities on nuclear data carried out by Japanese Nuclear Data Committee (JNDC) during the fiscal years of 2003 and 2004. During this period, the nuclear data files for special purposes (JENDL-HE-2004 and JENDL-PD-2004) were released. Other activities are described: analysis of post nuclear fuel irradiation experiments, nuclear chart and nuclear data evaluation for astrophysics.

Journal Articles

Crystal and magnetic structures and their temperature dependence of Co$$_{2}$$Z-type hexaferrite (Ba, Sr)$$_{3}$$Co$$_{2}$$Fe$$_{24}$$O$$_{41}$$ by high-temperature neutron diffraction

Takada, Yukio*; Nakagawa, Takashi*; Tokunaga, Masatoshi*; Fukuta, Yasunari*; Tanaka, Takayoshi*; Yamamoto, Takao*; Tachibana, Takeshi*; Kawano, Shinji*; Ishii, Yoshinobu; Igawa, Naoki

Journal of Applied Physics, 100(4), p.043904_1 - 043904_7, 2006/08

 Times Cited Count:69 Percentile:89.28(Physics, Applied)

no abstracts in English

Journal Articles

Nuclear characteristics of High Temperature Engineering Test Reactor (HTTR)

Goto, Minoru; Nojiri, Naoki; Nakagawa, Shigeaki; Fujimoto, Nozomu

Koon Gakkai-Shi, 32(1), p.11 - 15, 2006/01

no abstracts in English

Journal Articles

Temperature dependence of magnetic moment orientation in Co$$_{2}$$Z-type hexaferrite estimated by high-temperature neutron diffraction

Takada, Yukio*; Nakagawa, Takashi*; Fukuta, Yasunari*; Tokunaga, Masatoshi*; Yamamoto, Takao*; Tachibana, Takeshi*; Kawano, Shinji*; Igawa, Naoki; Ishii, Yoshinobu

Japanese Journal of Applied Physics, 44(5A), p.3151 - 3156, 2005/05

 Times Cited Count:3 Percentile:13.72(Physics, Applied)

We investigated the correlation between the thremomagnetic curve of Co$$_{2}$$Z-Type hexagonal barium ferrite, Ba$$_{3}$$Co$$_{1.8}$$Fe$$_{24.2}$$O$$_{41}$$ and its magnetic moment direction. The thermomagnetic curve shows two significant magnetization slumps at 540K and 680K. High-temperature neutron diffraction experiment and Rietveld analyses indicate that temperature rise from 523 to 573K makes the magnetic moments turn to the c-axis from a direction parallel to the c-plane most significantly.The change in average orientation of the magnetic moments must be induced by the disappearence of the contribution of cobalt to magnetism in this temperature.

JAEA Reports

Rise-to-power test in high temperature engineering test reactor in the high temperature test operation mode; Test progress and summary of test results up to 30MW of reactor thermal power

Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Sakaba, Nariaki; Takada, Eiji*; Tochio, Daisuke; Shimakawa, Satoshi; Nojiri, Naoki; Goto, Minoru; Shibata, Taiju; Ueta, Shohei; et al.

JAERI-Tech 2004-063, 61 Pages, 2004/10

JAERI-Tech-2004-063.pdf:3.14MB

The High Temperature engineering Test Reactor (HTTR) is a graphite moderated and gas cooled reactor with the thermal power of 30MW and the reactor outlet coolant temperature of 850$$^{circ}$$C/950$$^{circ}$$C. Rise-to-power test in the HTTR was performed from March 31th to May 1st in 2004 as phase 5 test up to 30MW in the high temperature test operation mode. It was confirmed that the thermal reactor power and the reactor outlet coolant temperature reached to 30MW and 950$$^{circ}$$C respectively on April 19th in the single operation mode using only the primary pressurized water cooler. The parallel loaded operation mode using the intermediate heat exchanger and the primary pressurized water cooler was performed from June 2nd and JAERI (Japan Atomic Energy Research Institute) obtained the certificate of the pre-operation test on June 24th from MEXT (Ministry of Education Culture Sports Science and Technology) after all the pre-operation tests were passed successfully in the high temperature test operation mode. Achievement of the reactor-outlet coolant temperature of 950$$^{circ}$$C is the first time in the world. It is possible to extend highly effective power generation with a high-temperature gas turbine and produce hydrogen from water with a high-temperature. This report describes the results of the high-temperature test operation of the HTTR.

JAEA Reports

Core dynamics analysis of control rod withdrawal test in HTTR (Contract Research)

Takada, Eiji*; Nakagawa, Shigeaki; Takamatsu, Kuniyoshi; Shimakawa, Satoshi; Nojiri, Naoki; Fujimoto, Nozomu

JAERI-Tech 2004-048, 60 Pages, 2004/06

JAERI-Tech-2004-048.pdf:4.18MB

The HTTR (High Temperature Engineering Test Reactor), which has thermal output of 30MW, coolant inlet temperature of 395$$^{circ}$$C and coolant outlet temperature of 850$$^{circ}$$C/950$$^{circ}$$C, is a first high temperature gas-cooled reactor (HTGR) in Japan. The HTGR has a high inherent safety potential to accident condition. Safety demonstration tests using the HTTR are underway in order to demonstrate such excellent inherent safety features of the HTGR. The reactivity insertion test demonstrates that rapid increase of reactor power by withdrawing the control rod is restrained by only the negative reactivity feedback effect without operating the reactor power control system, and the temperature transient of the reactor is slow. The best estimated analyses have been conducted to simulate reactor transients during the reactivity insertion test. A one-point core dynamics approximation with one fuel channel model is applied to this analysis. It was found that the analytical model for core dynamics could simulate the reactor power behavior.

Journal Articles

Research activities of Japanese Nuclear Data Committee in the fiscal years of 2001 and 2002

Igashira, Masayuki*; Shibata, Keiichi; Takano, Hideki*; Yamano, Naoki*; Matsunobu, Hiroyuki*; Kitao, Kensuke*; Katakura, Junichi; Nakagawa, Tsuneo; Hasegawa, Akira; Iwasaki, Tomohiko*; et al.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(1), p.128 - 139, 2004/03

no abstracts in English

JAEA Reports

Test plans of the high temperature test operation at HTTR

Sakaba, Nariaki; Nakagawa, Shigeaki; Takada, Eiji*; Nojiri, Naoki; Shimakawa, Satoshi; Ueta, Shohei; Sawa, Kazuhiro; Fujimoto, Nozomu; Nakazawa, Toshio; Ashikagaya, Yoshinobu; et al.

JAERI-Tech 2003-043, 59 Pages, 2003/03

JAERI-Tech-2003-043.pdf:2.54MB

HTTR plans a high temperature test operation as the fifth step of the rise-to-power tests to achieve a reactor outlet coolant temperature of 950 degrees centigrade in the 2003 fiscal year. Since HTTR is the first HTGR in Japan which uses coated particle fuel as its fuel and helium gas as its coolant, it is necessary that the plan of the high temperature test operation is based on the previous rise-to-power tests with a thermal power of 30 MW and a reactor outlet coolant temperature at 850 degrees centigrade. During the high temperature test operation, reactor characteristics, reactor performances and reactor operations are confirmed for the safety and stability of operations. This report describes the evaluation result of the safety confirmations of the fuel, the control rods and the intermediate heat exchanger for the high temperature test operation. Also, problems which were identified during the previous operations are shown with their solution methods. Additionally, there is a discussion on the contents of the high temperature test operation. As a result of this study, it is shown that the HTTR can safely achieve a thermal power of 30MW with the reactor outlet coolant temperature at 950 degrees centigrade.

Journal Articles

Japanese evaluated nuclear data library version 3 revision-3; JENDL-3.3

Shibata, Keiichi; Kawano, Toshihiko*; Nakagawa, Tsuneo; Iwamoto, Osamu; Katakura, Junichi; Fukahori, Tokio; Chiba, Satoshi; Hasegawa, Akira; Murata, Toru*; Matsunobu, Hiroyuki*; et al.

Journal of Nuclear Science and Technology, 39(11), p.1125 - 1136, 2002/11

 Times Cited Count:658 Percentile:96.97(Nuclear Science & Technology)

Evaluation for JENDL-3.3 has been performed by considering the accumulated feedback information and various benchmark tests of the previous library JENDL-3.2. The major problems of the JENDL-3.2 data were solved by the new library: overestimation of criticality values for thermal fission reactors was improved by the modifications of fission cross sections and fission neutron spectra for $$^{235}$$U; incorrect energy distributions of secondary neutrons from important heavy nuclides were replaced with statistical model calculations; the inconsistency between elemental and isotopic evaluations was removed for medium-heavy nuclides. Moreover, covariance data were provided for 20 nuclides. The reliability of JENDL-3.3 was investigated by the benchmark analyses on reactor and shielding performances. The results of the analyses indicate that JENDL-3.3 predicts various reactor and shielding characteristics better than JENDL-3.2.

JAEA Reports

Rise-to-power test in High Temperature Engineering Test Reactor; Test progress and summary of test results up to 30MW of reactor thermal power

Nakagawa, Shigeaki; Fujimoto, Nozomu; Shimakawa, Satoshi; Nojiri, Naoki; Takeda, Takeshi; Saikusa, Akio; Ueta, Shohei; Kojima, Takao; Takada, Eiji*; Saito, Kenji; et al.

JAERI-Tech 2002-069, 87 Pages, 2002/08

JAERI-Tech-2002-069.pdf:10.12MB

Rise-to-power test in the HTTR has been performed from April 23rd to June 6th in 2000 as phase 1 test up to 10MW, from January 29th to March 1st in 2001 as phase 2 test up to 20MW in the rated operation mode and from April 14th to June 8th in 2001 as phase 3 test up to 20MW in the high temperature test operation mode. Phase 4 test to achieve the thermal reactor power of 30MW started from October 23rd in 2001. On December 7th it was confirmed that the thermal reactor power reached to 30MW and the reactor outlet coolant temperature reached to 850$$^{circ}$$C. JAERI obtained the certificate of pre-operation test from MEXT because all the pre-operation tests by MEXT were passed successfully. From the test results of rise-up-power test up to 30MW, the performance of reactor and cooling system were confirmed, and it was confirmed that an operation of reactor facility could be performed safely. Some problems to be solved were found through tests. By means of solving them, the reactor operation with the reactor outlet coolant temperature of 950$$^{circ}$$C will be achievable.

JAEA Reports

Measurement of $$gamma$$ ray from fuel of High Temperature Engineering Test Reactor; Method of measurement and results

Fujimoto, Nozomu; Nojiri, Naoki; Takada, Eiji*; Yamashita, Kiyonobu; Kikuchi, Takayuki; Nakagawa, Shigeaki; Kojima, Takao; Umeta, Masayuki; Hoshino, Osamu; Kaneda, Makoto*; et al.

JAERI-Tech 2001-002, 64 Pages, 2001/02

JAERI-Tech-2001-002.pdf:3.64MB

no abstracts in English

Oral presentation

Development of HTTR fuel temperature estimation model

Tochio, Daisuke; Fujimoto, Nozomu; Nojiri, Naoki; Nakagawa, Shigeaki

no journal, , 

In the High Temperature engineering Test Reactor established in JAEA, the reactor outlet coolant temperature of 950 $$^{circ}$$C is achieved at April, 2004. In the current HTTR fuel temperature estimation model, the homogenized fuel block model is used and maximum fuel temperature is estimation with the consideration of hot spot factor representing heterogeneous-model effect. This method was used in the HTTR designing and constructed for the purpose of estimation of conservative fuel temperature. On the other hand, from the point of view of FP release behavior, more realistic fuel temperature estimation is required. In the present research, the realistic core-shape estimation model is constructed, and fuel temperature is estimated for reactor outlet coolant temperature 950$$^{circ}$$C.

30 (Records 1-20 displayed on this page)