Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 491

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Experimental study on local interfacial parameters in upward air-water bubbly flow in a vertical 6$$times$$6 rod bundle

Han, X.*; Shen, X.*; Yamamoto, Toshihiro*; Nakajima, Ken*; Sun, Haomin; Hibiki, Takashi*

International Journal of Heat and Mass Transfer, 144, p.118696_1 - 118696_19, 2019/12

Journal Articles

Background issues encountered by cold-neutron chopper spectrometer AMATERAS

Kikuchi, Tatsuya*; Nakajima, Kenji; Kawamura, Seiko; Inamura, Yasuhiro; Nakamura, Mitsutaka; Wakai, Daisuke*; Aoyama, Kazuhiro*; Iwahashi, Takaaki*; Kambara, Wataru*

Physica B; Condensed Matter, 564, p.45 - 53, 2019/07

Details of the background, that is, unwanted signals accumulated by the data acquisition system of neutron instruments, observed by the cold-neutron chopper spectrometer AMATERAS installed at the Materials and Life Science Experimental Facility at J-PARC are reported. In the design phase of AMATERAS, we carefully considered the achievement of high signal-to-noise ratio, and possible countermeasures were implemented. Actually, recent scientific outputs from AMATERAS indicates that the spectrometer is one of excellent neutron instruments with low background. In spite of that, in nine years of AMATERAS operation, we have encountered unwanted signals due to various reasons, including gamma-rays emitted at materials on or near the beam line including the sample itself, scattered neutrons from the beam line devices, air scattering, electronic noise in data acquisition system, cosmic rays, T0 burst, and other unknown sources. In this report, we discuss the background observed by AMATERAS, especially in the conditions of without samples, comprehensively. The possible sources of these signals and the countermeasures considered against the above sources are discussed, which may be helpful to those who are engaged in other existing or planned neutron-scattering instruments.

Journal Articles

Localized magnetic excitations in the fully frustrated dimerized magnet Ba$$_{2}$$CoSi$$_{2}$$O$$_{6}$$Cl$$_{2}$$

Kurita, Nubuyuki*; Yamamoto, Daisuke*; Kanesaka, Takuya*; Furukawa, Nobuo*; Kawamura, Seiko; Nakajima, Kenji; Tanaka, Hidekazu*

Physical Review Letters, 123(2), p.027206_1 - 027206_6, 2019/07

Journal Articles

Evidence for singular-phonon-induced nematic superconductivity in a topological superconductor candidate Sr$$_{0.1}$$Bi$$_{2}$$Se$$_{3}$$

Wang, J.*; Ran, K.*; Li, S.*; Ma, Z.*; Bao, S.*; Cai, Z.*; Zhang, Y.*; Nakajima, Kenji; Kawamura, Seiko; $v{C}$erm$'a$k, P.*; et al.

Nature Communications (Internet), 10, p.2802_1 - 2802_6, 2019/06

Journal Articles

Measurement of neutron scattering cross section of nano-diamond with particle diameter of approximately 5 nm in energy range of 0.2 meV to 100 meV

Teshigawara, Makoto; Tsuchikawa, Yusuke*; Ichikawa, Go*; Takata, Shinichi; Mishima, Kenji*; Harada, Masahide; Oi, Motoki; Kawamura, Yukihiko*; Kai, Tetsuya; Kawamura, Seiko; et al.

Nuclear Instruments and Methods in Physics Research A, 929, p.113 - 120, 2019/06

A nano-diamond is an attractive neutron reflection material below cold neutron energy. The total neutron cross section of a nano-diamond was derived from a neutron transmission measurement over the neutron energy range of 0.2 meV to 100 meV because total neutron cross section data were not available. The total cross section of a nano-diamond with particle size of approximately 5 nm increased with a decrease in neutron energy to 0.2 meV. It was approximately two orders of magnitude larger than that of graphite at 0.2 meV. The contribution of inelastic scattering to the total cross section was to be shown negligible small at neutron energies of 1.2, 1.5, 1.9, 2.6, and 5.9 meV in the inelastic neutron scattering measurement. Moreover, small-angle neutron scattering measurements of the nano-diamond showed a large scattering cross section in the forward direction for low neutron energies.

Journal Articles

Status of neutron spectrometers at J-PARC

Kajimoto, Ryoichi; Yokoo, Tetsuya*; Nakamura, Mitsutaka; Kawakita, Yukinobu; Matsuura, Masato*; Endo, Hitoshi*; Seto, Hideki*; Ito, Shinichi*; Nakajima, Kenji; Kawamura, Seiko

Physica B; Condensed Matter, 562, p.148 - 154, 2019/06

Journal Articles

Triplon band splitting and topologically protected edge states in the dimerized antiferromagnet

Nawa, Kazuhiro*; Tanaka, Kimihito*; Kurita, Nubuyuki*; Sato, Taku*; Sugiyama, Haruki*; Uekusa, Hidehiro*; Kawamura, Seiko; Nakajima, Kenji; Tanaka, Hidekazu*

Nature Communications (Internet), 10, p.2096_1 - 2096_8, 2019/05

Search for topological materials has been actively promoted in the field of condensed matter physics for their potential application in energy-efficient information transmission and processing. Recent studies have revealed that topologically invariant states, such as edge states in topological insulators, can emerge not only in a fermionic electron system but also in a bosonic system, enabling nondissipative propagation of quasiparticles. Here we report the topologically nontrivial triplon bands measured by inelastic neutron scattering on the spin-1/2 two-dimensional dimerized antiferromagnet Ba$$_{2}$$CuSi$$_{2}$$O$$_{6}$$Cl$$_{2}$$. The excitation spectrum exhibits two triplon bands that are clearly separated by a band gap due to a small alternation in interdimer exchange interaction, consistent with a refined crystal structure. By analytically modeling the triplon dispersion, we show that Ba$$_{2}$$CuSi$$_{2}$$O$$_{6}$$Cl$$_{2}$$ is the first bosonic realization of the coupled Su-Schrieffer-Heeger model, where the presence of topologically protected edge states is prompted by a bipartite nature of the lattice.

Journal Articles

Coexistence of ferromagnetic and stripe-type antiferromagnetic spin fluctuations in YFe$$_{2}$$Ge$$_{2}$$

Wo, H.*; Wang, Q.*; Shen, Y.*; Zhang, X.*; Hao, Y.*; Feng, Y.*; Shen, S.*; He, Z.*; Pan, B.*; Wang, W.*; et al.

Physical Review Letters, 122(21), p.217003_1 - 217003_5, 2019/05

Journal Articles

Chemical trapping of Sr vapor species by Zircaloy cladding under a specific chemical condition

Mohamad, A.*; Nakajima, Kunihisa; Suzuki, Eriko; Miwa, Shuhei; Osaka, Masahiko; Oishi, Yuji*; Muta, Hiroaki*; Kurosaki, Ken*

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 4 Pages, 2019/05

In the accident of Fukushima Daiichi Nuclear Power Station, formation of a volatile SrCl$$_{2}$$ could have occurred by the sea-water injection into the core. This can cause the release of non-volatile group Sr from the fuel to induce chemical reactions with reactor structural materials, such as stainless steel and Zircaloy (Zry) cladding. Such reactions could cause the changes in distribution of Sr in the reactor. Chemical reactions between Sr species and Zry were therefore investigated experimentally. As the result, it can be said that Sr vapor species were chemically trapped right after the release from fuel. This trapping effect of Sr by Zry-cladding implies a possibility of preferable Sr retention in the oxide phase of debris.

Journal Articles

Colossal barocaloric effects in plastic crystals

Li, B.*; Kawakita, Yukinobu; Kawamura, Seiko; Sugahara, Takeshi*; Wang, H.*; Wang, J.*; Chen, Y.*; Kawaguchi, Saori*; Kawaguchi, Shogo*; Ohara, Koji*; et al.

Nature, 567(7749), p.506 - 510, 2019/03

Refrigeration is of vital importance for modern society for example, for food storage and air conditioning- and 25 to 30% of the world's electricity is consumed for refrigeration. Current refrigeration technology mostly involves the conventional vapour compression cycle, but the materials used in this technology are of growing environmental concern because of their large global warming potential. As a promising alternative, refrigeration technologies based on solid-state caloric effects have been attracting attention in recent decades. However, their application is restricted by the limited performance of current caloric materials, owing to small isothermal entropy changes and large driving magnetic fields. Here we report colossal barocaloric effects (CBCEs) (barocaloric effects are cooling effects of pressure-induced phase transitions) in a class of disordered solids called plastic crystals. The obtained entropy changes in a representative plastic crystal, neopentylglycol, are about 389 joules per kilogram per kelvin near room temperature. Pressure-dependent neutron scattering measurements reveal that CBCEs in plastic crystals can be attributed to the combination of extensive molecular orientational disorder, giant compressibility and highly anharmonic lattice dynamics of these materials. Our study establishes the microscopic mechanism of CBCEs in plastic crystals and paves the way to next-generation solid-state refrigeration technologies.

Journal Articles

Modelling of cesium chemisorption under nuclear power plant severe accident conditions

Miradji, F.; Suzuki, Chikashi; Nishioka, Shunichiro; Suzuki, Eriko; Nakajima, Kunihisa; Osaka, Masahiko; Barrachin, M.*; Do, T. M. D.*; Murakami, Kenta*; Suzuki, Masahide*

Proceedings of 9th Conference on Severe Accident Research (ERMSAR 2019) (Internet), 21 Pages, 2019/03

JAEA Reports

Presentation Materials Related to Neutron Instruments in the Technical Study Meetings for Future MLF

Nakajima, Kenji; Harjo, S.; Yamada, Norifumi*; Oikawa, Kenichi; Kajimoto, Ryoichi

JAEA-Review 2018-032, 43 Pages, 2019/02


A series of meetings to discuss future neutron/muon sources and instruments at Materials and Life Science Experimental Facility (MLF) in Japan Proton Accelerator Research Complex (J-PARC) has been held since 2017. Each of the neutron instrument groups in MLF proposed required features for future instruments, while addressing issues of the current instruments and facilities. This report compiles the presentation materials presented by the neutron instrument groups in the meetings to help future discussion for the coming MLF.

Journal Articles

Spin correlations of quantum spin liquid and quadrupole-ordered states of Tb$$_{2+x}$$Ti$$_{2-x}$$O$$_{7+y}$$

Kadowaki, Hiroaki*; Wakita, Mika*; F${aa}$k, B.*; Ollivier, J.*; Kawamura, Seiko; Nakajima, Kenji; Lynn, J. W.*

Physical Review B, 99(1), p.014406_1 - 014406_12, 2019/01

Spin correlations of the frustrated pyrochlore oxide Tb$$_{2+x}$$Ti$$_{2-x}$$O$$_{7+y}$$ have been investigated by using inelastic neutron scattering on single-crystalline samples (x = -0.007, 0.000, and 0.003), which have the putative quantum-spin-liquid (QSL) or electric-quadrupolar ground states. Spin correlations, which are notably observed in nominally elastic scattering, show short-range correlations around $$Gamma$$ points, tiny antiferromagnetic Bragg scattering at L and $$Gamma$$ points, and pinch-point-type structures around $$Gamma$$ points. The short-range spin correlations were analyzed using a random-phase approximation (RPA) assuming the paramagnetic state and two-spin interactions among Ising spins. These analyses have shown that the RPA scattering intensity well reproduces the experimental data using temperature- and x-dependent coupling constants of up to tenth-neighbor site pairs. This suggests that no symmetry breaking occurs in the QSL sample and that a quantum treatment beyond the semiclassical RPA approach is required. Implications of the experimental data and the RPA analyses are discussed.

Journal Articles

Synthesis and characterization of CeO$$_{2}$$-based simulated fuel containing CsI

Takamatsu, Yuki*; Ishii, Hiroto*; Oishi, Yuji*; Muta, Hiroaki*; Yamanaka, Shinsuke*; Suzuki, Eriko; Nakajima, Kunihisa; Miwa, Shuhei; Osaka, Masahiko; Kurosaki, Ken*

Nippon Genshiryoku Gakkai Wabun Rombunshi, 17(3/4), p.106 - 110, 2018/12

In order to establish the synthesis method of simulated fuel contacting Cesium (Cs) which is required for the evaluation of physical/chemical characteristics in fuel and release behavior of Cs, sintering tests of the cerium dioxide (CeO$$_{2}$$) based simulated fuels containing Cesium iodide (CsI) are performed by using spark plasma sintering (SPS) method. The sintered CeO$$_{2}$$ pellets with homogeneous distribution of several micro meter of CsI spherical precipitates were successfully obtained by optimizing SPS conditions.

Journal Articles

High-energy magnetic excitations in lightly oxygen-doped lanthanum nickel oxides

Nakajima, Kenji; Kajimoto, Ryoichi

Physica B; Condensed Matter, 551, p.142 - 145, 2018/12

 Percentile:100(Physics, Condensed Matter)

Journal Articles

Anomaly of structural relaxation in complex liquid metal of bismuth; Dynamic correlation function of coherent quasi-elastic neutron scattering

Kawakita, Yukinobu; Kikuchi, Tatsuya*; Inamura, Yasuhiro; Tahara, Shuta*; Maruyama, Kenji*; Hanashima, Takayasu*; Nakamura, Mitsutaka; Kiyanagi, Ryoji; Yamauchi, Yasuhiro*; Chiba, Kaori*; et al.

Physica B; Condensed Matter, 551, p.291 - 296, 2018/12

 Times Cited Count:4 Percentile:63.1(Physics, Condensed Matter)

There are elemental liquid metals with complex structures far from the hard sphere (HS) packing model. Liquid Bi has an asymmetric first peak in the structure factors S(Q). The pair distribution function g(r) exhibits strange distance ratio of 1:2 between the first and the second peaks. Since a HS model with two kinds of radius produces asymmetry of the main peak in S(Q), existence of short-lived covalent bonds was discussed. Contrarily, modulation of the atomic distribution by the Friedel oscillations of shielding electrons around metallic ions was discussed. To examine its bonding nature from viewpoints of dynamic correlation functions, we have measured neutron quasielastic scattering of liquid Bi by using cold disk chopper spectrometer installed at MLF of J-PARC. The van Hove function revealed that the shoulder structure located at a longer side of the first peak in g(r) exhibits a longer relaxation time than the main structures such as the first and second peaks.

Journal Articles

Electrical and crystallographic study of an electrothermodynamic cycle for a waste heat recovery

Kim, J.*; Yamanaka, Satoru*; Nakajima, Akira*; Kato, Takanori*; Kim, J.*; Kim, Y.*; Fukuda, Tatsuo; Yoshii, Kenji; Nishihata, Yasuo; Baba, Masaaki*; et al.

Advanced Sustainable Systems (Internet), 2(11), p.1800067_1 - 1800067_8, 2018/11

Journal Articles

Al-impurity-induced magnetic excitations in heavily over-doped La$$_{1.7}$$Sr$$_{0.3}$$Cu$$_{0.95}$$Al$$_{0.05}$$O$$_{4}$$

Ikeuchi, Kazuhiko*; Nakajima, Kenji; Kawamura, Seiko; Kajimoto, Ryoichi; Wakimoto, Shuichi; Suzuki, Kensuke*; Fujita, Masaki*

AIP Advances (Internet), 8(10), p.101318_1 - 101318_5, 2018/10

By means of inelastic neutron scattering, we measured magnetic excitations in a sizable single crystal of La$$_{1.7}$$Sr$$_{0.3}$$Cu$$_{0.95}$$Al$$_{0.05}$$O$$_{4}$$, which is an Al-substituted system of the heavily hole-doped cuprate system La$$_{2-x}$$Sr$$_{x}$$CuO$$_{4}$$ with an effective concentration of holes of $$X_{rm eff}$$ = 0.25.

Journal Articles

Investigation of the electronic structure and lattice dynamics of the thermoelectric material Na-doped SnSe

Wu, P.*; Zhang, B.*; Peng, K. L.*; Hagiwara, Masayuki*; Ishikawa, Yoshihisa*; Kofu, Maiko; Lee, S. H.*; Kumigashira, Hiroshi*; Hu, C. S.*; Qi, Z. M.*; et al.

Physical Review B, 98(9), p.094305_1 - 094305_7, 2018/09

 Percentile:100(Materials Science, Multidisciplinary)

Using angle-resolved photoemission spectroscopy and inelastic neutron scattering, we have studied how electronic structures and lattice dynamics evolve with temperature in Na-doped SnSe.

Journal Articles

Study on neutron beam pulse width dependence in the nuclear fuel measurement by the neutron resonance transmission analysis

Kitatani, Fumito; Tsuchiya, Harufumi; Toh, Yosuke; Hori, Junichi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Nakajima, Ken*

KURRI Progress Report 2017, P. 99, 2018/08

491 (Records 1-20 displayed on this page)