Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 202

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Investigation of high-temperature chemical interaction of calcium silicate insulation and cesium hydroxide

Rizaal, M.; Nakajima, Kunihisa; Saito, Takumi*; Osaka, Masahiko; Okamoto, Koji*

Journal of Nuclear Science and Technology, 57(9), p.1062 - 1073, 2020/09

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

The interaction of cesium hydroxide and a calcium silicate insulation material was experimentally investigated at high temperature conditions. A thermogravimetry equipped with differential thermal analysis was used to analyze thermal events in the samples of mixed calcium silicate and cesium hydroxide under Ar-5%H$$_{2}$$ and Ar-4%H$$_{2}$$-20%H$$_{2}$$0 with maximum temperature of 1100$$^{circ}$$C. Prior being mixed with cesium hydroxide, a part of calcium silicate was pretreated at high temperature to evaluate the effect of possible structural changes of this material due to a preceding thermal history and also the sake of thermodynamic evaluation to those available ones. Based upon the initial condition (preliminary heat treatment) of calcium silicate, it was found that if the original material consisted of xonotlite (Ca$$_{6}$$Si$$_{6}$$0$$_{17}$$(0H)$$_{2}$$), the endothermic reaction with cesium hydroxide occurred over the temperature range 575-730$$^{circ}$$C meanwhile if the crystal phase of original material was changed to wollastonite (CaSi0$$_{3}$$), the interaction occurred over temperature range 700-1100$$^{circ}$$C. Furthermore, the X-ray diffraction analyses have indicated on both type of pretreated calsils that regardless of Ar-5%H$$_{2}$$ and Ar-4%H$$_{2}$$-20%H$$_{2}$$0 atmosphere, cesium aluminum silicate, CsAlSi0$$_{4}$$ was formed with aluminum in the samples as an impurity or adduct.

Journal Articles

Low temperature heat capacity of Cs$$_{2}$$Si$$_{4}$$O$$_{9}$$

Suzuki, Eriko; Nakajima, Kunihisa; Osaka, Masahiko; Oishi, Yuji*; Muta, Hiroaki*; Kurosaki, Ken*

Journal of Nuclear Science and Technology, 57(7), p.852 - 857, 2020/07

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

The low temperature heat capacity of Cs$$_{2}$$Si$$_{4}$$O$$_{9}$$, which is one of the cesium chemisorbed compounds onto stainless steel during severe accident of the light water nuclear reactor, was experimentally determined for the first time in the temperature range of 1.9 - 302 K. The experimentally determined heat capacity, $$C_{p}$$$$^{o}$$ (298.15K), and the standard entropy, $$S^{o}$$ (298.15K), were 249.4 $$pm$$ 1.1 J K$$^{-1}$$ mol$$^{-1}$$ and 322.1 $$pm$$ 1.3 J K$$^{-1}$$ mol$$^{-1}$$, respectively. The standard Gibbs energy of formation of Cs$$_{2}$$Si$$_{4}$$O$$_{9}$$ at high temperatures, $$Delta$$$$_{f}$$$$G^{o}$$($$T$$), were reevaluated by using the presently obtained $$S^{o}$$ (298.15K) and the previously reported experimental results of the standard enthalpy of formation, $$Delta$$$$_{f}$$$$H^{o}$$ (298.15K), and the standard enthalpy increments at high temperatures, $$H^{o}$$($$T$$)-$$H^{o}$$ (298.15K).

Journal Articles

Room-temperature adsorption behavior of cesium onto calcium silicate insulation

Rizaal, M.; Saito, Takumi*; Okamoto, Koji*; Erkan, N.*; Nakajima, Kunihisa; Osaka, Masahiko

Mechanical Engineering Journal (Internet), 7(3), p.19-00563_1 - 19-00563_10, 2020/06

The adsorption of cesium (Cs) on calcium silicate insulation of primary piping system is postulated to contribute in high dose rate of surrounding pedestal area in Fukushima Daiichi NPP unit 2. In this study, room-temperature experiment of Cs adsorption on calcium silicate has been studied as an initial approach of Cs adsorption behavior toward higher temperature condition. As the result of analyzing of Cs adsorption kinetics, it was expected that the underlying adsorption mechanism is chemisorption. Furthermore, analysis of adsorption isotherm suggested unrestricted monolayer formation followed by multilayer formation.

Journal Articles

Development of fission product chemistry database ECUME for the LWR severe accident

Miwa, Shuhei; Nakajima, Kunihisa; Miyahara, Naoya; Nishioka, Shunichiro; Suzuki, Eriko; Horiguchi, Naoki; Liu, J.; Miradji, F.; Imoto, Jumpei; Mohamad, B. A.; et al.

Mechanical Engineering Journal (Internet), 7(3), p.19-00537_1 - 19-00537_11, 2020/06

We constructed the fission product (FP) chemistry database named ECUME for LWR severe accident. This version of ECUME is equipped with dataset of the chemical reactions and their kinetics constants for the reactions of cesium(Cs)-iodine(I)-boron(B)-molybdenum(Mo)-oxygen(O)-hydrogen(H) system in gas phase, the elemental model for the high temperature chemical reaction of Cs with stainless steel applied as the structural material in a reactor, and thermodynamic data for CsBO$$_{2}$$ vapor species and solids of Cs$$_{2}$$Si$$_{4}$$O$$_{9}$$ and CsFeSiO$$_{4}$$ for these chemical reactions. The ECUME will provide estimation of Cs distribution due to the evaluation of effects of interaction with BWR control material B and stainless steel on Cs behavior in the Fukushima Daiichi Nuclear Power Station.

Journal Articles

Study on chemisorption model of cesium hydroxide onto stainless steel type 304

Nakajima, Kunihisa; Nishioka, Shunichiro*; Suzuki, Eriko; Osaka, Masahiko

Mechanical Engineering Journal (Internet), 7(3), p.19-00564_1 - 19-00564_14, 2020/06

A large amount of cesium (Cs) chemisorbed onto stainless steel is predicted to be present especially in the upper region of reactor pressure vessel (RPV) during light water reactor severe accident (LWR SA) and a chemisorption model was developed for estimation of such amounts of Cs for stainless steel type 304 (SS304). However, this existing chemisorption model cannot accurately reproduce experimental results. Therefore, in this study, a modified Cs chemisorption model which accounts for silicon content in SS304 and concentration of cesium hydroxide (CsOH) in gaseous phases was constructed by combining penetration theory for gas-liquid mass transfer with chemical reaction and mass action law for CsOH decomposition at interface between gaseous and solid phases. As a result, it was found that the modified model was able to reproduce the experimental data more accurately than the existing model.

Journal Articles

Cesium chemisorbed species onto stainless steel surfaces; An Atomistic scale study

Miradji, F.; Suzuki, Chikashi; Nakajima, Kunihisa; Osaka, Masahiko

Journal of Physics and Chemistry of Solids, 136, p.109168_1 - 109168_9, 2020/01

 Times Cited Count:1 Percentile:27.81(Chemistry, Multidisciplinary)

Journal Articles

An Experimental investigation of influencing chemical factors on Cs-chemisorption behavior onto stainless steel

Nishioka, Shunichiro; Nakajima, Kunihisa; Suzuki, Eriko; Osaka, Masahiko

Journal of Nuclear Science and Technology, 56(11), p.988 - 995, 2019/11

 Times Cited Count:4 Percentile:9.78(Nuclear Science & Technology)

In order to contribute to improvement of Cs chemisorption model used in severe accident analysis codes, the influence of chemical factors (temperature, atmosphere, concentration of affecting chemical elements etc.) on the Cs chemisorption behaviour onto stainless steel was investigated experimentally. It was found that the surface reaction rate constant used in the current Cs-chemisorption model was influenced by not only temperature, as already known, but also atmosphere, cesium hydroxide (CsOH) concentration in the gas phase and silicon content in SS304. Such chemical factors should be considered for the construction of the improved Cs-chemisorption model. Another important finding is that the chemisorption behavior at lower temperatures, around 873 K, could differ from those above 1073 K. Namely, Cs-Fe-O compounds would form as the main Cs-chemisorbed compounds at 873 K while Cs-Si-Fe-O compounds at more than 1073 K.

Journal Articles

Development of fission product chemistry database ECUME for the LWR severe accident

Miwa, Shuhei; Miyahara, Naoya; Nakajima, Kunihisa; Nishioka, Shunichiro; Suzuki, Eriko; Horiguchi, Naoki; Liu, J.; Miradji, F.; Imoto, Jumpei; Mohamad, B. A.; et al.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

We constructed the first version of fission product (FP) chemistry database named ECUME for LWR severe accident. The first version of ECUME is equipped with dataset of the chemical reactions and their kinetics constants for the reactions of cesium(Cs)-iodine(I)-boron(B)-molybdenum(Mo)-oxygen(O)-hydrogen(H) system in gas phase, the elemental model for the high temperature chemical reaction of Cs with stainless steel, and thermodynamic data for CsBO$$_{2}$$ vapor species and solids of Cs$$_{2}$$Si$$_{4}$$O$$_{9}$$ and CsFeSiO$$_{4}$$. The ECUME will provide more accurate estimation of Cs distribution due to the evaluation of effects of interaction with BWR control material B and stainless steel on Cs behavior in the Fukushima Daiichi Nuclear Power Station.

Journal Articles

Study on chemisorption model of cesium hydroxide onto stainless steel type 304

Nakajima, Kunihisa; Nishioka, Shunichiro; Suzuki, Eriko; Osaka, Masahiko

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

Cesium chemisorption models were developed for estimation of amount of cesium chemisorbed onto stainless steel type 304 (SS304) during light water reactor severe accident. However, existing chemisorption models cannot accurately reproduce experimental results. In this study, a modified cesium chemisorption model was constructed based on a penetration theory for gas-liquid mass transfer with chemical reaction and was able to adequately describe effects on concentration of cesium hydroxide in gaseous phase and silicon content in SS304. It was found that the modified model can more accurately reproduce the experimental data than the existing model.

Journal Articles

Experimental study on Cs chemisorption behaviour onto stainless steel at around 873 K

Suzuki, Eriko; Takase, Gaku; Nakajima, Kunihisa; Nishioka, Shunichiro; Hashimoto, Naoyuki*; Isobe, Shigehito*; Osaka, Masahiko

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 4 Pages, 2019/05

In order to acquire the knowledge of the Cs chemisorption behaviour in the lower temperature region, the Cs chemisorbed compounds and the surface reaction rates were investigated by conducting the Cs chemisorption tests onto stainless steel at 873 and 973 K. As a result, The cesium ferrate compounds were revealed to be formed at this temperatures. It was seen that the dependences of surface reaction rate constant on this temperature were different from that at the higher temperature region. This behaviour leads to the conclusion that the Cs chemisorption model in the low temperature region should be newly constructed.

Journal Articles

Chemical trapping of Sr vapor species by Zircaloy cladding under a specific chemical condition

Mohamad, A.*; Nakajima, Kunihisa; Suzuki, Eriko; Miwa, Shuhei; Osaka, Masahiko; Oishi, Yuji*; Muta, Hiroaki*; Kurosaki, Ken*

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 4 Pages, 2019/05

In the accident of Fukushima Daiichi Nuclear Power Station, formation of a volatile SrCl$$_{2}$$ could have occurred by the sea-water injection into the core. This can cause the release of non-volatile group Sr from the fuel to induce chemical reactions with reactor structural materials, such as stainless steel and Zircaloy (Zry) cladding. Such reactions could cause the changes in distribution of Sr in the reactor. Chemical reactions between Sr species and Zry were therefore investigated experimentally. As the result, it can be said that Sr vapor species were chemically trapped right after the release from fuel. This trapping effect of Sr by Zry-cladding implies a possibility of preferable Sr retention in the oxide phase of debris.

Journal Articles

Modelling of cesium chemisorption under nuclear power plant severe accident conditions

Miradji, F.; Suzuki, Chikashi; Nishioka, Shunichiro; Suzuki, Eriko; Nakajima, Kunihisa; Osaka, Masahiko; Barrachin, M.*; Do, T. M. D.*; Murakami, Kenta*; Suzuki, Masahide*

Proceedings of 9th Conference on Severe Accident Research (ERMSAR 2019) (Internet), 21 Pages, 2019/03

Journal Articles

Synthesis and characterization of CeO$$_{2}$$-based simulated fuel containing CsI

Takamatsu, Yuki*; Ishii, Hiroto*; Oishi, Yuji*; Muta, Hiroaki*; Yamanaka, Shinsuke*; Suzuki, Eriko; Nakajima, Kunihisa; Miwa, Shuhei; Osaka, Masahiko; Kurosaki, Ken*

Nippon Genshiryoku Gakkai Wabun Rombunshi, 17(3/4), p.106 - 110, 2018/12

In order to establish the synthesis method of simulated fuel contacting Cesium (Cs) which is required for the evaluation of physical/chemical characteristics in fuel and release behavior of Cs, sintering tests of the cerium dioxide (CeO$$_{2}$$) based simulated fuels containing Cesium iodide (CsI) are performed by using spark plasma sintering (SPS) method. The sintered CeO$$_{2}$$ pellets with homogeneous distribution of several micro meter of CsI spherical precipitates were successfully obtained by optimizing SPS conditions.

Journal Articles

Effect of atmosphere on the vaporization behavior of CsFeSiO$$_{4}$$

Suzuki, Eriko; Nakajima, Kunihisa; Osaka, Masahiko

Progress in Nuclear Science and Technology (Internet), 5, p.165 - 167, 2018/11

In severe accident condition, CsFeSiO$$_{4}$$ could be formed by Cesium (Cs) chemisorption onto reactor structural materials. For evaluation of re-vaporization behavior, effect of atmosphere on the vaporization behavior of CsFeSiO$$_{4}$$ at high temperature was investigated by thermal gravimetric-differential thermal analyzer (TG-DTA) experiments. As a result, it was found that vaporization of CsFeSiO$$_{4}$$ in reducing atmosphere (Ar-5%H$$_{2}$$) started at relatively low temperature, about 800$$^{circ}$$C, compared with in atmosphere containing H$$_{2}$$O (Ar-5%H$$_{2}$$-5%H$$_{2}$$O). It was inferred that a possible chemical reaction for the weight loss at around 800$$^{circ}$$C would occurred by the decomposition of CsFeSiO$$_{4}$$ into volatile Cs vapor species under H$$_{2}$$.

Journal Articles

An Experimental investigation for atmospheric effects on Cs chemisorption onto stainless steel

Nakajima, Kunihisa; Suzuki, Eriko; Miyahara, Naoya; Osaka, Masahiko

Progress in Nuclear Science and Technology (Internet), 5, p.168 - 170, 2018/11

Chemical interaction between cesium (Cs) vapor and stainless steel (SS) surface known as chemisorption can cause a significant amount of Cs retention on the inner surfaces within the reactor pressure vessel during a light water reactor severe accident (SA). Although the chemisorption is known to be influenced with temperature and atmosphere, their dependancies are not yet fully understood. Therefore, the Cs chemisorption behaviours under mixed gases of steam and hydrogen were experimentally examined to contribute to a better understanding of the chemisorption behaviours under various atmospheres experienced during the SA at the Fukushima Daiichi Nuclear Power Station. As a result, it was found that the deposited amounts of Cs onto the SS in the steam-containing atmosphere were much higher than those in the no steam atmosphere. It was considered that Cs revaporization from a chemisorbed product was one of the reasons why the deposited amounts under the reducing atmosphere decreased.

Journal Articles

Chemical form analysis of reaction products in Cs-adsorption on stainless steel by means of HAXPES and SEM/EDX

Kobata, Masaaki; Okane, Tetsuo; Nakajima, Kunihisa; Suzuki, Eriko; Owada, Kenji; Kobayashi, Keisuke*; Yamagami, Hiroshi; Osaka, Masahiko

Journal of Nuclear Materials, 498, p.387 - 394, 2018/01

 Times Cited Count:7 Percentile:13.66(Materials Science, Multidisciplinary)

In this study, for the understandings of Cesium (Cs) adsorption behavior on structure materials in severe accidents at a light water nuclear reactor, the chemical state of Cs and its distribution on the surface of SUS304 stainless steel (SS) with different Si concentration were investigated by hard X-ray photoelectron spectroscopy (HAXPES) and scanning electron microscope / energy dispersive X-ray spectroscopy (SEM/EDX). As a result, it was found that Cs is selectively adsorbed at the site where Si distributes with high concentration. CsFeSiO$$_{4}$$ is a dominant Cs products in the case of low Si content, mainly formed, while Cs$$_{2}$$Si$$_{2}$$O$$_{5}$$ and Cs$$_{2}$$Si$$_{4}$$O$$_{9}$$ are formed in addition to CsFeSiO$$_{4}$$ in the case of high Si content. The chemical forms of the Cs compounds produced in the adsorption process on the SS surface has a close correlation with the concentration and chemical states of Si originally included in SS.

Journal Articles

ScPd$$_2$$Al$$_3$$; New polymorphic phase in Al-Pd-Sc system

Pospisil, J.; Haga, Yoshinori; Nakajima, Kunihisa; Ishikawa, Norito; C$'i$sa$v{r}$ov$'a$, I.*; Tateiwa, Naoyuki; Yamamoto, Etsuji; Yamamura, Tomoo*

Solid State Communications, 268, p.12 - 14, 2017/12

 Times Cited Count:0 Percentile:100(Physics, Condensed Matter)

Journal Articles

Prediction of chemical effects of Mo and B on the Cs chemisorption onto stainless steel

Di Lemma, F. G.; Yamashita, Shinichiro; Miwa, Shuhei; Nakajima, Kunihisa; Osaka, Masahiko

Energy Procedia, 127, p.29 - 34, 2017/09

 Times Cited Count:1 Percentile:24.33

Chemical effects of molybdenum (Mo) and boron (B), which were considered to form compounds with Cs, on the Cs chemisorption were predicted using a chemical equilibrium calculation. It is seen that Cs$$_{2}$$MoO$$_{4}$$ were formed in the chemisorbed compounds. On the other hand, little effects were observed for B. The results suggest that the effects of Mo should be considered for further experimental investigation.

Journal Articles

Development of experimental and analytical technologies for fission product chemistry under LWR severe accident condition

Miyahara, Naoya; Miwa, Shuhei; Nakajima, Kunihisa; Osaka, Masahiko

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 9 Pages, 2017/09

This paper presents the development of a reproductive experimental setup for FP release and transport and an analysis tool considering chemical reaction kinetics for the construction of the FP chemistry database. The performance test of the reproductive experimental setup TeRRa using CsI compounds show that TeRRa can reproduce well a FP chemistry-related behavior such as aerosol formation, growth and deposition behavior. An analytical tool has been developed based on the commercial ANSYS-FLUENT code. Some additional models was added to evaluate detailed FP chemistry during release and transport in this study. A test analysis simulating the CsI heating test in steam atmosphere was carried out to demonstrate the performance of the improved code. The result shows the appropriateness of the additional models.

Journal Articles

Thermodynamic study of gaseous CsBO$$_{2}$$ by Knudsen effusion mass spectrometry

Nakajima, Kunihisa; Takai, Toshihide; Furukawa, Tomohiro; Osaka, Masahiko

Journal of Nuclear Materials, 491, p.183 - 189, 2017/08

 Times Cited Count:2 Percentile:62.26(Materials Science, Multidisciplinary)

One of the main chemical forms of cesium in the gas phase during severe accidents of light water reactor is expected to be cesium metaborate, CsBO$$_{2}$$, by thermodynamic equilibrium calculation considering reaction with boron. But accuracy of the thermodynamic data of gaseous metaborate, CsBO$$_{2}$$(g), has been judged as poor quality. Thus, Knudsen effusion mass spectrometric measurement of CsBO$$_{2}$$ was carried out to obtain reliable thermodynamic data. The evaluated values of standard enthalpy of formation of CsBO$$_{2}$$(g), $$Delta$$$$_{f}$$H$$^{circ}$$$$_{298}$$(CsBO$$_{2}$$,g), by the 2nd and 3rd law treatments are -700.7$$pm$$10.7 kJ/mol and -697.0$$pm$$10.6 kJ/mol, respectively, and agree with each other within the errors, which suggests our data are reliable. Further, it was found that the existing data of the Gibbs energy function and the standard enthalpy of formation agreed well with the values evaluated in this study, which indicates the existing thermodynamic data are also reliable.

202 (Records 1-20 displayed on this page)