Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fujibayashi, Hiroyuki*; Kinjo, Katsuki*; Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; et al.
Journal of the Physical Society of Japan, 92(5), p.053702_1 - 053702_5, 2023/05
Times Cited Count:0 Percentile:0.01(Physics, Multidisciplinary)Kinjo, Katsuki*; Fujibayashi, Hiroki*; Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; et al.
Physical Review B, 105(14), p.L140502_1 - L140502_5, 2022/04
Times Cited Count:3 Percentile:64.73(Materials Science, Multidisciplinary)Nakamine, Genki*; Kinjo, Katsuki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; Homma, Yoshiya*; et al.
Journal of the Physical Society of Japan, 90(6), p.064709_1 - 064709_7, 2021/06
Times Cited Count:14 Percentile:86.83(Physics, Multidisciplinary)Nakamine, Genki*; Kinjo, Katsuki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; Homma, Yoshiya*; et al.
Physical Review B, 103(10), p.L100503_1 - L100503_5, 2021/03
Times Cited Count:27 Percentile:94.29(Materials Science, Multidisciplinary)Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; Homma, Yoshiya*; Li, D.*; et al.
Journal of the Physical Society of Japan, 88(11), p.113703_1 - 113703_4, 2019/11
Times Cited Count:57 Percentile:95.33(Physics, Multidisciplinary)Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Hattori, Taisuke; Higa, Nonoka; Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Nakamura, Ai*; Shimizu, Yusei*; et al.
Journal of the Physical Society of Japan, 88(7), p.073701_1 - 073701_4, 2019/07
Times Cited Count:56 Percentile:95.21(Physics, Multidisciplinary)We report Te-NMR studies on a newly discovered heavy fermion superconductor UTe
. Using a single crystal, we have measured the
Te-NMR Knight shift
and spin-lattice relaxation rate
for fields along the three orthorhombic crystal axes. The data confirm a moderate Ising anisotropy for both the static (
) and dynamical susceptibilities (
) in the paramagnetic state above about 20 K. Around 20 K, however, we have observed a sudden loss of NMR spin-echo signal due to sudden enhancement of the NMR spin-spin relaxation rate
, when the field is applied along the easy axis of magnetization (=
axis). This behavior suggests the development of longitudinal magnetic fluctuations along the
axis at very low frequencies below 20 K.
Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Hattori, Taisuke; Higa, Nonoka*; Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Nakamura, Ai*; Shimizu, Yusei*; et al.
no journal, ,
Te NMR studies have been performed on a newly discovered heavy fermion superconductor UTe
.Using a single crystal, we have measured the
Te NMR Knight shift
and spin-lattice relaxation rate
for fields along the three orthorhombic crystal axes. The data confirm a moderate Ising anisotropy for both the static (
) and dynamical susceptibilities (
) in the paramagnetic state above about 20 K. Around 20 K, however, we have observed a sudden loss of NMR spin-echo signal due to sudden enhancement of the NMR spin-spin relaxation rate
, when the field is applied along the easy axis of magnetization (=
axis).
Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Hattori, Taisuke; Higa, Nonoka*; Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Nakamura, Ai*; Shimizu, Yusei*; et al.
no journal, ,
Recently, Ran et al. reported evidence for superconductivity in the uranium-based heavy fermion material UTe, exhibiting the rather high transition temperature of 1.6 K. The ground state of UTe
is paramagnetic, not ferromagnetic. However, the compound still exhibits a very large and anisotropic upper critical field H
, exceeding the Pauli limit along the three principal axes, similar to the ferromagnetic superconductors, UCoGe and URhGe. Field-induced metamagnetic transition and re-entrant superconducting behaviour have been reported under strong magnetic fields around 35 T, when a magnetic field was applied along the orthorhombic hard-magnetization b-axis. In this study, we have performed Te-NMR measurements on a newly discovered heavy fermion superconductor UTe
. Our NMR data confirm a moderate Ising anisotropy for both the static (K) and dynamical susceptibilities (1/
) in the paramagnetic state above about 20 K.