Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 204

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Final report on feasibility study of Pu monitoring and solution measurement of high active liquid waste containing fission product at Reprocessing Facility

Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi*; Tsutagi, Koichi; Nishida, Naoki; Kitao, Takahiko; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A.*; Browne, M.*

JAEA-Technology 2019-023, 160 Pages, 2020/03

JAEA-Technology-2019-023.pdf:9.43MB

The International Atomic Energy Agency (IAEA) has proposed in its Research and Development plan (STR-385), the development of technology to enable real-time flow measurement of nuclear material as a part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, Japan Atomic Energy Agency (JAEA) has been tackling development of a new detector to enable monitoring of Pu in solutions with numerous FPs as a joint research program with U.S. DOE to cover whole reprocessing process. In this study, High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant was used as the test field. At first, the design information of HALW storage tank and radiation (type and intensity) were investigated to develop a Monte Carlo N-Particle Transport Code (MCNP) model. And then, dose rate distribution outside/ inside of the concrete cell where the HALW tank is located was measured to design new detectors and check MCNP model applicability. Using the newly designed detectors, gamma rays and neutron were continuously measured at the outside/ inside of the concrete cell to assess the radiation characteristics and to optimize detector position. Finally, the applicability for Pu monitoring technology was evaluated based on the simulation results and gamma-ray/neutron measurement results. We have found that there is possibility to monitor the change of Pu amount in solution by combination both of gamma-ray and neutron measurement. The results of this study suggested the applicability and capability of the Pu motoring to enhance safeguards for entire reprocessing facility which handles Pu with FP as a feasibility study. This is final report of this project.

Journal Articles

Enhancement of element production by incomplete fusion reaction with weakly bound deuteron

Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.

Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07

 Times Cited Count:4 Percentile:23.32(Physics, Multidisciplinary)

Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for $$^{107}$$Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.

Journal Articles

Measurements of the $$^{243}$$Am neutron capture and total cross sections with ANNRI at J-PARC

Kimura, Atsushi; Nakamura, Shoji; Terada, Kazushi*; Nakao, Taro*; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.

Journal of Nuclear Science and Technology, 56(6), p.479 - 492, 2019/06

 Times Cited Count:1 Percentile:56.06(Nuclear Science & Technology)

Journal Articles

Measurements of gamma-ray emission probabilities in the decay of americium-244g

Nakamura, Shoji; Terada, Kazushi*; Kimura, Atsushi; Nakao, Taro*; Iwamoto, Osamu; Harada, Hideo; Uehara, Akihiro*; Takamiya, Koichi*; Fujii, Toshiyuki*

Journal of Nuclear Science and Technology, 56(1), p.123 - 129, 2019/01

 Times Cited Count:1 Percentile:56.06(Nuclear Science & Technology)

Accurate data of $$gamma$$-ray emission probabilities are frequently needed when one quantitatively determines the amount of isotope by $$gamma$$-ray measurements or obtains neutron capture cross-sections using them. Americium-243, one of the most important minor actinides, produces $$^{244}$$Am after neutron capture. The 744-keV $$gamma$$-ray decaying from the ground state of $$^{244}$$Am has a relatively large $$gamma$$-ray emission probability c.a. 66%, however, its uncertainty is as large as 29%. The uncertainty of the $$gamma$$-ray emission probability leads to a major factor of the systematic uncertainty on determining an amount of isotope, and therefore the $$gamma$$-ray emission probability was measured by using an activation method and an examined level structure of $$^{244}$$Cm. In this study, the emission probability of 744-keV $$gamma$$ ray was derived as 66.5$$pm$$1.1%, and its uncertainty was improved from 29% to 2%.

Journal Articles

Feasibility study result of advanced solution measurement and monitoring technology for reprocessing facility

Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi*; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A.*; Browne, M.*

Proceeding IAEA Symposium on International Safeguards; Building Future Safeguards Capabilities (Internet), 8 Pages, 2018/11

The IAEA has proposed, in its Research and Development plan (STR-385), the development of technology to enable real-time flow measurement of nuclear material as part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, JAEA and JNFL had previously designed and developed a neutron coincidence based non-destructive assay system to monitor Pu in solution directly after a purification process. To enhance this technology for entire reprocessing facilities, as a feasibility study, JAEA has been tackling development of a new detector to enable monitoring of Pu in solutions with numerous fission products (FPs) as a joint research program with the U.S. DOE. In this study, the High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant (TRP) was used as the test bed. The design information of the HALW storage tank and radiation (type and intensity) were investigated, to develop a Monte Carlo N-Particle Transport Code (MCNP) model. Then, dose rate distribution inside the concrete cell where the HALW tank is located was measured, to enable design of new detectors and check the integrity of the MCNP model and its applicability. Using the newly-designed detectors, $$gamma$$-rays and neutrons could be measured continuously at the outside/inside of the concrete cell, to optimize detector position and the radiation characteristics. The applicability as a Pu-monitoring technology was evaluated, based on the simulation results and $$gamma$$-ray/neutron measurement results. We have found that there is a possibility to monitor the change of Pu amount in solution by combination of $$gamma$$-ray and neutron measurements. The results of this study suggest a feasibility study into the applicability and capability of Pu monitoring to enhance the entire reprocessing facility handling Pu with FPs. In this paper, a summary of the project will be presented.

Journal Articles

Measurements of neutron total and capture cross sections of $$^{241}$$Am with ANNRI at J-PARC

Terada, Kazushi*; Kimura, Atsushi; Nakao, Taro*; Nakamura, Shoji; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.

Journal of Nuclear Science and Technology, 55(10), p.1198 - 1211, 2018/10

 Times Cited Count:3 Percentile:38.72(Nuclear Science & Technology)

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Development of gamma spectra detector for high active liquid waste

Sekine, Megumi; Matsuki, Takuya; Tokoro, Hayate; Tsutagi, Koichi; Kitao, Takahiko; Nakamura, Hironobu; Tomikawa, Hirofumi

Proceedings of INMM 59th Annual Meeting (Internet), 10 Pages, 2018/07

In a reprocessing facility, it is necessary to develop a detector which can measure plutonium (Pu) content in the Pu solutions containing fission products (FP) in order to expand the application of Pu monitoring. In order to establish this technology, JAEA has studied a system measure $$gamma$$-rays was utilized since it applicable for Pu monitoring. Ce:GAGG (Ce:Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$) scintillator detector can measure a wide energy range in a high-dose environment and has reasonable resolution. $$gamma$$-ray measurements were performed inside of the concrete cell containing the High Active Liquid Waste tank at the Tokai reprocessing plant. In the spectra, the two significant peaks were measured by the GAGG above 800 keV and were considered to be from Eu-154. There $$gamma$$-ray measurements will be combined with previous neutron measurements and both will be compared to MCNP models for future Pu monitoring technology. This presentation will describe the detector selection, the design system, the results of $$gamma$$-ray spectral measurements and the applicability for Pu monitoring. This project has been carried out under the support of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese government.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Design of GAGG detector and gamma spectrum measurement

Sekine, Megumi; Matsuki, Takuya; Tokoro, Hayate; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu

Nihon Kaku Busshitsu Kanri Gakkai Dai-38-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2018/04

In a reprocessing facility, it is necessary to develop a detector which is measurable plutonium (Pu) amount in the Pu solution containing the Fission Product (FP) in order to expand the application of Pu monitoring. To investigate $$gamma$$ rays which is applicable for Pu monitoring, Ce:GAGG (Ce: Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$) scintillator which can measure a wide range of energy at high dose and has high resolution (Target: High Active Liquid Waste (HALW)) was newly designed and developed in deal with aim for Pu quantitativeness. $$gamma$$ ray measurement was performed to the HALW in the concrete cell using the detector, and it was confirmed that high energy $$gamma$$ rays (9.5 MeV) could be measured and high energy $$gamma$$ rays spectra over 3 MeV without deriving from FP at the first time. In this presentation, detector design, results of $$gamma$$ ray spectra measurement, applicability evaluation to Pu monitoring and the future plan are presented. This project has been carried out under the support of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese government.

Journal Articles

Retreat from stress; Rattling in a planar coordination

Suekuni, Koichiro*; Lee, C. H.*; Tanaka, Hiromi*; Nishibori, Eiji*; Nakamura, Atsushi*; Kasai, Hidetaka*; Mori, Hitoshi*; Usui, Hidetomo*; Ochi, Masayuki*; Hasegawa, Takumi*; et al.

Advanced Materials, 30(13), p.1706230_1 - 1706230_6, 2018/03

 Times Cited Count:27 Percentile:6.84(Chemistry, Multidisciplinary)

Thermoelectric materials for highly efficient devices must satisfy conflicting requirements of high electrical conductivity and low thermal conductivity. In this paper, we studied the crystal structure and phonon dynamics of tetrahedrites (Cu,Zn)$$_{12}$$(Sb,As)$$_{4}$$S$$_{13}$$. The results revealed that the Cu atoms in a planar coordination are rattling, which effectively scatter phonons. These findings provide a new strategy for the development of highly efficient thermoelectric materials with planar coordination.

Journal Articles

Technical developments for accurate determination of amount of samples used for TOF measurements

Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Kimura, Atsushi; Iwamoto, Osamu; Harada, Hideo; Takamiya, Koichi*; Hori, Junichi*

EPJ Web of Conferences, 146, p.03019_1 - 03019_4, 2017/09

 Times Cited Count:2 Percentile:9.6

The research project entitled "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started to improve the reliability of the neutron cross section date of MAs. In order to obtain accurate cross section data, it is indispensable to determine the amount of MA sample accurately and non-destructively. However, the uncertainty concerning the amount of sample is not assured in some cases. Therefore, as a part of the AIMAC project, this study is aimed to development the technique for accurate determination of the amount of samples by two different methods: $$gamma$$-ray spectroscopic method and calorimetric method. This contribution presents the developed techniques together with results obtained by two independent techniques.

Journal Articles

Research and development for accuracy improvement of neutron nuclear data on minor actinides

Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki*; Katabuchi, Tatsuya*; et al.

EPJ Web of Conferences, 146, p.11001_1 - 11001_6, 2017/09

 Times Cited Count:2 Percentile:9.6

Journal Articles

Feasibility study of advanced measurement technology for solution monitoring at reprocessing plant; Dose rate measurement for the solution including Pu with FP

Matsuki, Takuya; Yamanaka, Atsushi; Sekine, Megumi; Suzuki, Satoshi*; Yasuda, Takeshi; Tsutagi, Koichi; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A. M.*; Browne, M. C.*

Proceedings of INMM 58th Annual Meeting (Internet), 8 Pages, 2017/07

The Tokai Reprocessing Plant (TRP) has been developing a new detector from 2015 to 2017 for purpose to monitor Pu amount in High Active Liquid Waste (HALW) containing FP. It can make a contribution to an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities because it becomes available to monitor and verify nuclear material movement continuously by a new detector, which has proposed by IAEA. For the second step of this project, we conducted dose rate measurement on the guide rail installing in the cell storing the HALW tank and comparison between measured dose rate distribution and calculation result by MCNP simulation in order to investigate the dose rate distribution which is needed for shielding design of a new detector that is used for radiation (neutron/$$gamma$$ spectrum) measurement in the cell and inquest on the monitoring position of the detector for Pu monitoring. In this paper, we report the result of the dose rate measurement in the cell, improvement of the simulation model which is cleared by comparison between measurement result and calculation result and our future plan.

Journal Articles

Operator's contribution on the improvement of inspection scheme for the PCDF operation

Shimizu, Yasuyuki; Makino, Risa; Mukai, Yasunobu; Ishiyama, Koichi; Kurita, Tsutomu; Nakamura, Hironobu

Dai-37-Kai Kaku Busshitsu Kanri Gakkai Nippon Shibu Nenji Taikai Rombunshu (CD-ROM), 9 Pages, 2017/02

no abstracts in English

Journal Articles

Feasibility study of advanced technology for Pu with FP solution monitoring; Overview of research plan and modelling for simulation

Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi; Tanigawa, Masafumi; Yasuda, Takeshi; Yamanaka, Atsushi; Tsutagi, Koichi; Nakamura, Hironobu; Tomikawa, Hirofumi; LaFleur, A. M.*; et al.

EUR-28795-EN (Internet), p.788 - 796, 2017/00

The IAEA has proposed in its long-term R&D plan, the development of technology to enable real-time flow measurement of nuclear material as a part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, JAEA has designed and developed a neutron coincidence based nondestructive assay system to monitor Pu directly in solutions which is after purification process and contains very little fission products (FPs). A new detector to enable monitoring of Pu in solutions with numerous FPs is being developed as a joint research program with U.S. DOE at the High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant. As the first step, the design information of HALW tank was investigated and samples of HALW was taken and analyzed for Pu concentration and isotope composition, density, content of dominant nuclides emitting $$gamma$$ ray or neutron, etc. in order to develop a Monte Carlo N-Particle Transport Code (MCNP) of the HALW tank. In addition, $$gamma$$ ray source spectra simulated by Particle and Heavy Ion Transport code System (PHITS) was developed by extracting peaks from the analysis data with germanium detector. These outputs are used for the fundamental data in the MCNP model which is then used to evaluate the type of detector, shielding design and measurement positions. In order to evaluate available radiations to measure outside the cell wall, continuous $$gamma$$ ray and neutron measurement were carried out and the results were compared to the simulation results. The measurement results showed that there are no FP peaks above 3 MeV. This paper presents an overview of the research plan, characteristics of HALW, development of source term for MCNP, simulation of radiation dose from the HALW tank and radiation measurement results at outside of cell wall.

Journal Articles

Measurements of $$gamma$$-ray emission probabilities of $$^{241,243}$$Am and $$^{239}$$Np

Terada, Kazushi; Nakamura, Shoji; Nakao, Taro; Kimura, Atsushi; Iwamoto, Osamu; Harada, Hideo; Takamiya, Koichi*; Hori, Junichi*

Journal of Nuclear Science and Technology, 53(11), p.1881 - 1888, 2016/11

 Times Cited Count:2 Percentile:69.03(Nuclear Science & Technology)

$$gamma$$-ray emission probabilities of $$^{241,243}$$Am and $$^{239}$$Np have been precisely measured with $$gamma$$- and $$alpha$$-ray spectroscopic methods. The activities of $$^{243}$$Am samples were determined by measuring alpha particles using a Si semiconductor detector. $$gamma$$-rays emitted from the samples were measured with a planar type High-Purity Germanium (HPGe) detector. An efficiency curve of the Ge detector was derived with uncertainties of 0.7% from 50 to 1332 keV and 1.3% below 50 keV by combining measured efficiencies and Monte Carlo simulation. The $$gamma$$-ray emission probabilities for the major $$gamma$$-rays of these nuclides were determined with uncertainties less than 1.2%.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Composition research of high active liquid waste and radiation measurement results on the surface of cell

Matsuki, Takuya; Masui, Kenji; Sekine, Megumi; Tanigawa, Masafumi; Yasuda, Takeshi; Tsutagi, Koichi; Ishiyama, Koichi; Nishida, Naoki; Horigome, Kazushi; Mukai, Yasunobu; et al.

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

The International Atomic Energy Agency (IAEA) has proposed in its long-term research and development (R&D) plan, development of a real-time measurement technology to monitor and verify nuclear material movement continuously as part of an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities. Since the Tokai Reprocessing Plant (TRP) has solutions containing both Pu and fission products (FP), a new detector development project to monitor Pu with FP is being carried out from 2015 to 2017. This project is mainly conducted in the High Active Liquid Waste Storage (HALWS) in the TRP. For the first step of this project, as the confirmation of composition of high active liquid waste (HALW) to evaluate neutron/$$gamma$$-ray emitted from solution in the selected HALW tank which has the most amount of Pu in HALW tanks at the TRP, we took HALW sample and conducted $$gamma$$-ray spectrum measurement for HALW. As a study of detector setting location, to survey the available neutron/$$gamma$$-ray (i.e. intensity) at the outside surface of the cell where HALW tank is located, we implemented continuous measurement by neutron/$$gamma$$-ray detector. In this paper, we report three $$gamma$$-ray peaks related with $$^{238}$$Pu and $$^{239}$$Pu measured in the composition research of HALW, which is needed to identify Pu amount by the new detector that we are developing and the result of radiation measurement on the surface of the cell.

Journal Articles

Operator's contribution on the improvement of RII scheme against the process operation at PCDF

Nakamura, Hironobu; Shimizu, Yasuyuki; Makino, Risa; Mukai, Yasunobu; Ishiyama, Koichi; Kurita, Tsutomu; Ikeda, Atsushi*; Yamaguchi, Katsuhiro*

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

Regarding the Integrated Safeguards (IS) in Japan, the implementation of IS has been started on September 2004, and the concept has been introduced to the JNC-1 facilities since August 2008. Then, random interim inspection with short notice and reducing person-days of inspection (PDI) was introduced instead of traditional scheduled IIV in order to improve deterrence of the nuclear material diversion with timeliness goal. And it was agreed that it should be evaluated and reviewed because RII was designed when inter-campaign. In JAEA, we decided to restart PCDF campaign to reduce potential safety risks of reprocessing facilities. To adopt the RII scheme to the process operation in campaign, JAEA proposed a new scheme to JSGO and IAEA without increasing PDI and reducing detection probability. As a result of the discussion, it was agreed and successfully introduced since March 2014. The new scheme for PCDF consists of scheduled inspection (fixed-day RII), reduction of estimated material for the verification, implementation of remote monitoring with data provision, improvement of operational status check list, introduction of NRTA and MC&A data declaration with timeliness. Though the operator's workloads for information provision were increased, we could manage to balance IS requirement with implementation of our operation successfully. This contribution was helped to safeguards implementation and our operation for 2 years.

Journal Articles

Feasibility study of technology for Pu solution monitoring including FP; Overview and research plan

Sekine, Megumi; Matsuki, Takuya; Tanigawa, Masafumi; Tsutagi, Koichi; Mukai, Yasunobu; Shimizu, Yasuyuki; Nakamura, Hironobu; Tomikawa, Hirofumi

Proceedings of INMM 57th Annual Meeting (Internet), 9 Pages, 2016/07

The International Atomic Energy Agency (IAEA) has proposed in its long-term research and development plan, development of a real-time measurement technology to monitor and verify nuclear material movement continuously as part of an advanced approach to effectively and efficiently conduct safeguards for reprocessing facilities. In the reprocessing plant, since solutions containing both Pu and FP exist, a new detector development project to monitor Pu with FP is being carried out from 2015 to 2017. This project is mainly conducted in the High Active Liquid Waste Storage (HALWS) in Tokai Reprocessing Plant (TRP). In this paper, an overview of the technology development, simulation results of preliminary evaluation of the characteristics of radiation emitted from the HALW tank at TRP, and the future research plan are presented.

Journal Articles

Characteristics of radiation-resistant real-time neutron monitor for accelerator-based BNCT

Nakamura, Takemi; Sakasai, Kaoru; Nakashima, Hiroshi; Takamiya, Koichi*; Kumada, Hiroaki*

Journal of Radiation Protection and Research, 41(2), p.105 - 109, 2016/06

no abstracts in English

Journal Articles

Search for neutron resonances of $$^{106}$$Pd

Nakamura, Shoji; Kimura, Atsushi; Toh, Yosuke; Harada, Hideo; Katabuchi, Tatsuya*; Mizumoto, Motoharu*; Igashira, Masayuki*; Hori, Junichi*; Kino, Koichi*

JAEA-Conf 2015-003, p.113 - 118, 2016/03

Experiments were carried out with the Ge detector of ANNRI to confirm whether or not the weak resonances were surely due to $$^{106}$$Pd. The prompt $$gamma$$ rays due to capture reaction of $$^{106}$$Pd were clearly observed at the $$gamma$$-ray energy at 115 kev and around 300 keV. When a TOF spectrum was extracted by gating at the prompt $$gamma$$ ray around 300 keV, the small resonance peaks were revealed at the neutron energy of 146 and 156 eV.

204 (Records 1-20 displayed on this page)