Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakamura, Hiroki; Machida, Masahiko
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 5 Pages, 2024/11
Efficiency and safety improvements in nuclear fuel development demand a comprehensive understanding of the thermal properties of PuO. Because of difficulty of experiments at high temperatures, they have been supplemented by numerical simulations, such as density functional theory (DFT). While DFT struggles to replicate the nonmagnetic insulating ground state of PuO, DFT+U can reproduce nonmagnetic insulating state. However, the obtained state remains less stable than magnetic states and is not the ground state. Adiabatic connection fluctuation-dissipation theory (ACFDT) is expected to be a promising solution, addressing higher-order correlations and exact exchange energies. In this study, we evaluate the ground state energy using ACFDT and find that the nonmagnetic state can be the ground state. This result successfully reproduces the observed nonmagnetic ground state of PuO and has the potential to improve predictions of the thermal properties of nuclear fuel materials.
Kato, Masato; Oki, Takumi; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.; Ozawa, Takayuki; Uwaba, Tomoyuki; Ikusawa, Yoshihisa; Nakamura, Hiroki; Machida, Masahiko
Journal of the American Ceramic Society, 107(5), p.2998 - 3011, 2024/05
Times Cited Count:2 Percentile:32.81(Materials Science, Ceramics)Vauchy, R.; Matsumoto, Taku; Hirooka, Shun; Uno, Hiroki*; Tamura, Tetsuya*; Arima, Tatsumi*; Inagaki, Yaohiro*; Idemitsu, Kazuya*; Nakamura, Hiroki; Machida, Masahiko; et al.
Journal of Nuclear Materials, 588, p.154786_1 - 154786_13, 2024/01
Times Cited Count:6 Percentile:89.01(Materials Science, Multidisciplinary)Kutsukake, Kenichi; Matsuda, Makoto; Nakamura, Masahiko; Ishizaki, Nobuhiro; Kabumoto, Hiroshi; Otokawa, Yoshinori; Asozu, Takuhiro; Matsui, Yutaka; Nakagawa, Sohei; Abe, Shinichi
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1080 - 1084, 2023/11
no abstracts in English
Kobayashi, Keita; Okumura, Masahiko; Nakamura, Hiroki; Itakura, Mitsuhiro; Machida, Masahiko; Urata, Shingo*; Suzuya, Kentaro
Scientific Reports (Internet), 13, p.18721_1 - 18721_12, 2023/11
Times Cited Count:7 Percentile:69.79(Multidisciplinary Sciences)The first sharp peak diffraction peak (FSDP) in the structure factor of amorphous materials is thought to reflect the medium-range order structure in amorphous materials, and the structural origin of the FSDP has been a subject of ongoing debate. In this study, we employed machine learning molecular dynamics (MLMD) with nearly first-principles calculation accuracy to investigate the structural origin of the FSDP in high-density silica glass. First, we successfully reproduced various experimental data of high-density silica glass using MLMD. Furthermore, we revealed that the development (or reduction) of the FSDP in high-density silica glass is characterized by the deformation behavior of ring structures in Si-O covalent bond networks under compression.
Ishizaki, Nobuhiro; Matsuda, Makoto; Nakamura, Masahiko; Kabumoto, Hiroshi; Kutsukake, Kenichi; Otokawa, Yoshinori; Asozu, Takuhiro; Matsui, Yutaka; Abe, Shinichi
JAEA-Conf 2022-002, p.5 - 10, 2023/03
no abstracts in English
Kobayashi, Keita; Nakamura, Hiroki; Itakura, Mitsuhiro; Machida, Masahiko; Okumura, Masahiko
Materia, 62(3), p.175 - 181, 2023/03
no abstracts in English
Kabumoto, Hiroshi; Matsuda, Makoto; Nakamura, Masahiko; Ishizaki, Nobuhiro; Kutsukake, Kenichi; Otokawa, Yoshinori; Asozu, Takuhiro; Matsui, Yutaka; Nakagawa, Sohei; Abe, Shinichi
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1109 - 1113, 2023/01
no abstracts in English
Galvin, C. O. T.*; Machida, Masahiko; Nakamura, Hiroki; Andersson, D. A.*; Cooper, M. W. D.*
Journal of Nuclear Materials, 572, p.154028_1 - 154028_8, 2022/12
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)UO is the primary conventional fuel used in most nuclear reactors with GdO commonly added as a burnable absorber to produce a more level power distribution in the reactor core at the beginning of operation. It can also be mixed with other actinide oxides to produce mixed oxide (MOx) fuel. In this study, molecular dynamics simulations were used to predict the specific heat capacity of Gd-doped PuO, UO and (U,Pu)O MOx accommodating Gd substituted at cation sites via two charge compensation mechanisms - oxygen vacancy formation and the oxidation of U to U. The specific heat capacity values for PuO and UO are in good agreement with other studies showing a distinct peak at high temperatures - above 1800 K. As Gd is added, the peak height reduces for each composition considered. An analytical fit was applied to the data where Gd was fully charge compensated by either oxygen vacancies or U. The expression was then validated by predicting the specific heat capacity for three compositions of (UPu)GdO containing both oxygen vacancies and U, and compared to molecular dynamics data.
Ikeuchi, Hirotomo; Koyama, Shinichi; Osaka, Masahiko; Takano, Masahide; Nakamura, Satoshi; Onozawa, Atsushi; Sasaki, Shinji; Onishi, Takashi; Maeda, Koji; Kirishima, Akira*; et al.
JAEA-Technology 2022-021, 224 Pages, 2022/10
A set of technology, including acid dissolving, has to be established for the analysis of content of elements/nuclides in the fuel debris samples. In this project, a blind test was performed for the purpose of clarifying the current level of analytical accuracy and establishing the alternative methods in case that the insoluble residue remains. Overall composition of the simulated fuel debris (homogenized powder having a specific composition) were quantitatively determined in the four analytical institutions in Japan by using their own dissolving and analytical techniques. The merit and drawback for each technique were then evaluated, based on which a tentative flow of the analyses of fuel debris was constructed.
Kato, Masato; Machida, Masahiko; Hirooka, Shun; Nakamichi, Shinya; Ikusawa, Yoshihisa; Nakamura, Hiroki; Kobayashi, Keita; Ozawa, Takayuki; Maeda, Koji; Sasaki, Shinji; et al.
Materials Science and Fuel Technologies of Uranium and Plutonium mixed Oxide, 171 Pages, 2022/10
Innovative and advanced nuclear reactors using plutonium fuel has been developed in each country. In order to develop a new nuclear fuel, irradiation tests are indispensable, and it is necessary to demonstrate the performance and safety of nuclear fuels. If we can develop a technology that accurately simulates irradiation behavior as a technology that complements the irradiation test, the cost, time, and labor involved in nuclear fuel research and development will be greatly reduced. And safety and reliability can be significantly improved through simulation of nuclear fuel irradiation behavior. In order to evaluate the performance of nuclear fuel, it is necessary to know the physical and chemical properties of the fuel at high temperatures. And it is indispensable to develop a behavior model that describes various phenomena that occur during irradiation. In previous research and development, empirical methods with fitting parameters have been used in many parts of model development. However, empirical techniques can give very different results in areas where there is no data. Therefore, the purpose of this study is to construct a scientific descriptive model that can extrapolate the basic characteristics of fuel to the composition and temperature, and to develop an irradiation behavior analysis code to which the model is applied.
Kobayashi, Keita; Okumura, Masahiko; Nakamura, Hiroki; Itakura, Mitsuhiro; Machida, Masahiko; Cooper, M. W. D.*
Scientific Reports (Internet), 12(1), p.9808_1 - 9808_11, 2022/06
Times Cited Count:12 Percentile:69.12(Multidisciplinary Sciences)no abstracts in English
Watanabe, Masashi; Nakamura, Hiroki; Suzuki, Kiichi; Machida, Masahiko; Kato, Masato
Journal of the American Ceramic Society, 105(3), p.2248 - 2257, 2022/03
Times Cited Count:2 Percentile:10.82(Materials Science, Ceramics)Properties of CeO were evaluated by DFT simulation to determine band gap, Frenkel defect formation energy and defect migration energy. Band gap and Frenkel defect formation energy were used to analyze defect equilibria. Oxygen partial pressure dependence of defect equilibria was evaluated based on oxygen potential experimental data and DFT calculation, and a Brouwer diagram was derived. The defect formation energies, including Frenkel defect, electron-hole pair and so on, were determined and used to evaluate the properties, including oxygen diffusion coefficients, electrical conduction, heat capacity and thermal conductivity. Mechanisms of various properties were discussed for a deeper understanding based on defect chemistry, and the relationship among properties were systematically described.
Matsuda, Makoto; Tayama, Hidekazu; Ishizaki, Nobuhiro; Kabumoto, Hiroshi; Nakamura, Masahiko; Kutsukake, Kenichi; Otokawa, Yoshinori; Asozu, Takuhiro; Matsui, Yutaka; Abe, Shinichi
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.394 - 398, 2021/10
no abstracts in English
Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.
Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03
Times Cited Count:51 Percentile:96.49(Astronomy & Astrophysics)Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200 C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.
Go, Shintaro*; Ideguchi, Eiji*; Yokoyama, Rin*; Aoi, Nori*; Azaiez, F.*; Furutaka, Kazuyoshi; Hatsukawa, Yuichi; Kimura, Atsushi; Kisamori, Keiichi*; Kobayashi, Motoki*; et al.
Physical Review C, 103(3), p.034327_1 - 034327_8, 2021/03
Times Cited Count:4 Percentile:48.14(Physics, Nuclear)Kobayashi, Keita; Nakamura, Hiroki; Yamaguchi, Akiko; Itakura, Mitsuhiro; Machida, Masahiko; Okumura, Masahiko
Computational Materials Science, 188, p.110173_1 - 110173_14, 2021/02
Times Cited Count:21 Percentile:74.83(Materials Science, Multidisciplinary)no abstracts in English
Nakamura, Hiroki; Machida, Masahiko
Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.104 - 108, 2020/10
Matsuda, Makoto; Ishizaki, Nobuhiro; Tayama, Hidekazu; Kabumoto, Hiroshi; Nakamura, Masahiko; Kutsukake, Kenichi; Otokawa, Yoshinori; Asozu, Takuhiro; Matsui, Yutaka; Abe, Shinichi; et al.
Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.948 - 952, 2020/09
no abstracts in English
Nakamura, Masahiko; Kutsukake, Kenichi; Matsuda, Makoto
JAEA-Technology 2019-022, 20 Pages, 2020/03
The JAEA Tokai tandem accelerator (an electrostatic accelerator) has the advantage that it can accelerate an ion beam with proportional energy to its acceleration voltage. Therefore the control of an ion beam energy can be automated when the control of the acceleration voltage can be automated by using the scaling operation system: an electromagnetics proportion of optical device parameters, and the ganged control system: a synchronized controlling related devices in the JAEA Tokai Tandem accelerator control system. We should improve several devices to achieve the automatic control of the accelerator voltage. Especially, the positioning system of the corona probe which adjusts the acceleration voltage had to be automated. However the original corona probe was difficult to be applied to the automation by its poor control system and low positioning precision. We have developed the new corona probe which improved defects of the original one. The new corona probe has an automatic and high precision positioning system and enhanced maintainability by new control system, new driven system and new position detection system. We describe about the development of the new corona probe in detail.