Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 379

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Thermal-neutron capture cross-section measurements of neptunium-237 with graphite thermal column in KUR

Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi

Journal of Nuclear Science and Technology, 59(11), p.1388 - 1398, 2022/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The present study selected $$^{237}$$Np among radioactive nuclides and aimed to measure the thermal-neutron capture cross-section for $$^{237}$$Np in a well-thermalized neutron field by an activation method. A $$^{237}$$Np standard solution was used for irradiation samples. A thermal-neutron flux at an irradiation position was measured with neutron flux monitors: $$^{45}$$Sc, $$^{59}$$Co, $$^{98}$$Mo, $$^{181}$$Ta and $$^{197}$$Au. The $$^{237}$$Np sample and flux monitors were irradiated together for 30 minutes in the graphite thermal column equipped with the Kyoto University Research Reactor. The similar irradiation was carried out twice. After the irradiations, the $$^{237}$$Np samples were quantified using 312-keV gamma ray emitted from $$^{233}$$Pa in a radiation equilibrium with $$^{237}$$Np. The reaction rates of $$^{237}$$Np were obtained from gamma-ray peak net counts given by $$^{238}$$Np, and then the thermal-neutron capture cross-section of $$^{237}$$Np was found to be 173.8$$pm$$4.4 barn by averaging the results obtained by the two irradiations. The present result was in agreement with the reported data given by a time-of-flight method within the limit of uncertainty.

Journal Articles

Integral experiment of $$^{129}$$I(n, $$gamma$$) using fast neutron source in the "YAYOI" reactor

Nakamura, Shoji; Toh, Yosuke; Kimura, Atsushi; Hatsukawa, Yuichi*; Harada, Hideo

Journal of Nuclear Science and Technology, 59(7), p.851 - 865, 2022/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The present study performed integral experiments of $$^{129}$$I using a fast-neutron source reactor "YAYOI" of the University of Tokyo to validate evaluated nuclear data libraries. The iodine-129 sample and flux monitors were irradiated by fast neutrons in the Glory hole of the YAYOI reactor. Reaction rates of $$^{129}$$I were obtained by measurement of decay gamma-rays emitted from $$^{130}$$I. The validity of the fast-neutron flux spectrum in the Glory hole was confirmed by the ${it C/E}$ ratios of the reaction rates of flux monitors. The experimental reaction rate of $$^{129}$$I was compared with that calculated with both the fast-neutron flux spectrum and evaluated nuclear data libraries. The present study revealed that the evaluated nuclear data of $$^{129}$$I cited in JENDL-4.0 should be reduced as much as 18% in neutron energies ranging from 10 keV to 3 MeV, and supported the reported data by Noguere ${it et al.}$ below 100 keV.

Journal Articles

Measurements of thermal-neutron capture cross-section of the $$^{237}$$Np(n, $$gamma$$) reaction with TC-Pn in KUR

Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*

KURNS Progress Report 2021, P. 93, 2022/07

In terms of nuclear transmutation studies of minor actinides in nuclear wastes, the present work selected $$^{237}$$Np among them and aimed to measure the thermal-neutron capture cross-section of $$^{237}$$Np using a well-thermalized neutron field by a neutron activation method because there have been discrepancies among reported cross-section data. A $$^{237}$$Np standard solution was used for irradiation samples. The thermal-neutron flux at an irradiation position was measured with flux monitors: $$^{45}$$Sc, $$^{59}$$Co, $$^{98}$$Mo, $$^{181}$$Ta and $$^{197}$$Au. The $$^{237}$$Np sample was irradiated together with the flux monitors for 30 minutes in the graphite thermal column equipped in the Kyoto University Research Reactor. The similar irradiation was repeated once more to confirm the reproducibility of the results. After irradiation, the $$^{237}$$Np samples were quantified using 312-keV gamma-ray emitted from $$^{233}$$Pa in radiation equilibrium with $$^{237}$$Np. The reaction rates of $$^{237}$$Np were obtained from the peak net counts of gamma-rays emitted from generated $$^{238}$$Np, and then the thermal-neutron capture cross-section of $$^{237}$$Np was found to be 173.8$$pm$$4.7 barn by averaging the results obtained by the two irradiations. The present result was in agreement with the reported data given by a time-of-flight method within a limit of uncertainty.

Journal Articles

Effect of sample density in prompt $$gamma$$-ray analysis

Maeda, Makoto; Segawa, Mariko; Toh, Yosuke; Endo, Shunsuke; Nakamura, Shoji; Kimura, Atsushi

Scientific Reports (Internet), 12(1), p.6287_1 - 6287_8, 2022/06

 Times Cited Count:1 Percentile:0(Multidisciplinary Sciences)

Journal Articles

KeV-neutron capture cross-section measurement of $$^{197}$$Au with a Cr-filtered neutron beam at the ANNRI beamline of MLF/J-PARC

Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Sato, Yaoki*; et al.

Journal of Nuclear Science and Technology, 59(5), p.647 - 655, 2022/05

 Times Cited Count:1 Percentile:33.13(Nuclear Science & Technology)

Journal Articles

Investigation of radioactive samples for neutron capture reaction measurements using energy-resolved neutron imaging

Segawa, Mariko; Toh, Yosuke; Kai, Tetsuya; Kimura, Atsushi; Nakamura, Shoji

Annals of Nuclear Energy, 167, p.108828_1 - 108828_5, 2022/03

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Neutron capture and total cross-section measurements and resonance parameter analysis of niobium-93 below 400 eV

Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Terada, Kazushi*; Meigo, Shinichiro; Toh, Yosuke; Segawa, Mariko; et al.

Journal of Nuclear Science and Technology, 59(3), p.318 - 333, 2022/03

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

KeV-region analysis of the neutron capture cross-section of $$^{237}$$Np

Rovira Leveroni, G.; Katabuchi, Tatsuya*; Tosaka, Kenichi*; Matsuura, Shota*; Kodama, Yu*; Nakano, Hideto*; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki

Journal of Nuclear Science and Technology, 59(1), p.110 - 122, 2022/01

 Times Cited Count:1 Percentile:33.13(Nuclear Science & Technology)

Journal Articles

$$^{241}$$Am neutron capture cross section in the keV region using Si and Fe-filtered neutron beams

Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*

Journal of Nuclear Science and Technology, 11 Pages, 2022/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Integral experiments of technetium-99 using fast-neutron source reactor "YAYOI"

Nakamura, Shoji; Hatsukawa, Yuichi*; Kimura, Atsushi; Toh, Yosuke; Harada, Hideo

Journal of Nuclear Science and Technology, 58(12), p.1318 - 1329, 2021/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The present study performed fast-neutron capture cross-section measurement of $$^{99}$$Tc by an activation method using a fast-neutron source reactor "YAYOI" of the University of Tokyo. Technetium-99 samples were irradiated with reactor neutrons using a pneumatic system. Reaction rates of $$^{99}$$Tc were obtained by measuring decay gamma rays emitted from $$^{100}$$Tc. The neutron flux at an irradiation position was monitored with gold foils. The fast-neutron capture cross section of $$^{99}$$Tc at neutron energy of 85 keV was derived as 0.432$$pm$$0.023 barn by using the reaction rates of $$^{99}$$Tc, evaluated cross-section data and the fast-neutron flux spectrum of the YAYOI reactor. The present study agreed with the evaluated nuclear data library JENDL-4.0.

Journal Articles

Measurements of the neutron capture cross section of $$^{243}$$Am around 23.5 keV

Kodama, Yu*; Katabuchi, Tatsuya*; Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Nobuyuki; Iwamoto, Osamu; Hori, Junichi*; Shibahara, Yuji*; et al.

Journal of Nuclear Science and Technology, 58(11), p.1159 - 1164, 2021/11

 Times Cited Count:2 Percentile:56.5(Nuclear Science & Technology)

Journal Articles

Thermal-neutron capture cross-section measurement of tantalum-181 using graphite thermal column at KUR

Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi

Journal of Nuclear Science and Technology, 58(10), p.1061 - 1070, 2021/10

 Times Cited Count:1 Percentile:33.13(Nuclear Science & Technology)

In a well-thermalized neutron field, it is principally possible to drive a thermal-neutron capture cross-section without considering an epithermal neutron component. This was demonstrated by a neutron activation method using the graphite thermal column (TC-Pn) of the Kyoto University Research Reactor. First, in order to confirm that the graphite thermal column was a well-thermalized neutron field, neutron irradiation was performed with neutron flux monitors: $$^{197}$$Au, $$^{59}$$Co, $$^{45}$$Sc, $$^{63}$$Cu, and $$^{98}$$Mo. The TC-Pn was confirmed to be extremely thermalized on the basis of Westcott's convention, because the thermal-neutron flux component took a constant value regardless of the sensitivity of each flux monitor to epithermal neutrons. Next, as a demonstration, the thermal-neutron capture cross section of $$^{181}$$Ta(n,$$gamma$$)$$^{182m+g}$$Ta reaction was measured using the graphite thermal column, and then derived to be 20.5$$pm$$0.4 barn, which supported the evaluated value of 20.4$$pm$$0.3 barn. The $$^{181}$$Ta nuclide could be useful as a flux monitor that complements the sensitivity between $$^{197}$$Au and $$^{98}$$Mo monitors.

Journal Articles

Thermal-neutron capture cross-section measurement of $$^{237}$$Np using graphite thermal column

Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*

KURNS Progress Report 2020, P. 94, 2021/08

The present study selected $$^{237}$$Np among radioactive nuclides and aimed to converge a contradiction between reported thermal-neutron capture cross sections. Neutron irradiation was carried out using the graphite thermal column equipped with the Kyoto University Research Reactor. A solution equivalent to 950 Bq order of radioactivity was pipetted out of a $$^{237}$$Np standard solution and dropped onto a fiber filter, which was then dried with an infrared lamp to prepare a $$^{237}$$Np sample. The $$^{237}$$Np sample was quantified using 312-keV gamma ray emitted from $$^{233}$$Pa in a radiation equilibrium with $$^{237}$$Np. To monitor a thermal-neutron flux component at an irradiation position, the $$^{237}$$Np sample was irradiated together with several stable nuclides as neutron flux monitors: $$^{45}$$Sc, $$^{59}$$Co, $$^{98}$$Mo, $$^{181}$$Ta and $$^{197}$$Au. The reaction rate of $$^{237}$$Np was obtained from gamma-ray yields given by $$^{238}$$Np and $$^{233}$$Pa, and then the thermal-neutron capture cross section of $$^{237}$$Np was derived.

Journal Articles

Nondestructive quantitative analysis of difficult-to-measure radionuclides $$^{107}$$Pd and $$^{99}$$Tc

Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Tsuneyama, Masayuki*; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Ebihara, Mitsuru*

Analytical Chemistry, 93(28), p.9771 - 9777, 2021/07

 Times Cited Count:2 Percentile:35(Chemistry, Analytical)

Journal Articles

Neutron capture cross sections of curium isotopes measured with ANNRI at J-PARC

Kawase, Shoichiro*; Kimura, Atsushi; Harada, Hideo; Iwamoto, Nobuyuki; Iwamoto, Osamu; Nakamura, Shoji; Segawa, Mariko; Toh, Yosuke

Journal of Nuclear Science and Technology, 58(7), p.764 - 786, 2021/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Neutron beam filter system for fast neutron cross-section measurement at the ANNRI beamline of MLF/J-PARC

Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Terada, Kazushi*; Kodama, Yu*; Nakano, Hideto*; et al.

Nuclear Instruments and Methods in Physics Research A, 1003, p.165318_1 - 165318_10, 2021/07

 Times Cited Count:3 Percentile:71.19(Instruments & Instrumentation)

Journal Articles

Isomer production ratio of the $$^{112}$$Cd($$n,gamma$$)$$^{113}$$Cd reaction in an $$s$$-process branching point

Hayakawa, Takehito*; Toh, Yosuke; Kimura, Atsushi; Nakamura, Shoji; Shizuma, Toshiyuki*; Iwamoto, Nobuyuki; Chiba, Satoshi*; Kajino, Toshitaka*

Physical Review C, 103(4), p.045801_1 - 045801_5, 2021/04

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

Journal Articles

Feasibility study of PGAA for boride identification in simulated melted core materials

Tsuchikawa, Yusuke; Abe, Yuta; Oishi, Yuji*; Kai, Tetsuya; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Kimura, Atsushi; Nakamura, Shoji; Harada, Masahide; et al.

JPS Conference Proceedings (Internet), 33, p.011074_1 - 011074_6, 2021/03

In the decommissioning of the Fukushima-Daiichi (1F) Nuclear Power Plant, it is essential to understand characteristics of the melted core materials. The estimation of boride in the real debris is of great importance to develop safe debris removal plans. Hence, it is required to investigate the amount of boron in the melted core materials with nondestructive methods. Prompt gamma-ray activation analysis (PGAA) is one of the useful techniques to determine the amount of borides by means of the 478 keV prompt gamma-ray from neutron absorption reaction of boron. Moreover, it is well known that the width of the 478 keV gamma-ray peak is typically broadened due to the Doppler effect. The degree of the broadening is affected by coexisting materials, and can be recognized by the width of the prompt gamma-ray peak. As a feasibility study, the prompt gamma-ray from boride samples were measured using the ANNRI, NOBORU, and RADEN beamlines at the Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Complex (J-PARC).

Journal Articles

Thermal-neutron capture cross sections and resonance integrals of the $$^{243}$$Am(n,$$gamma$$)$$^{rm 244g}$$Am and $$^{243}$$Am(n,$$gamma$$)$$^{rm 244m+g}$$Am reactions

Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi

Journal of Nuclear Science and Technology, 58(3), p.259 - 277, 2021/03

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Research and development were made for accuracy improvement of neutron capture cross section data on $$^{243}$$Am among minor actinides. First, the emission probabilities of decay $$gamma$$ rays were obtained with high accuracy, and the amount of the ground state of $$^{244}$$Am produced by reactor neutron irradiation of $$^{243}$$Am was examined by $$gamma$$-ray measurement. Next, the total amount of isomer and ground states was examined by $$alpha$$-ray measurement. Thermal-neutron capture cross sections and resonance integrals were derived both for the $$^{243}$$Am(n,$$gamma$$)$$^{rm 244g}$$Am and for $$^{243}$$Am(n,$$gamma$$)$$^{rm 244m+g}$$Am reactions.

Journal Articles

High-spin states in $$^{35}$$S

Go, Shintaro*; Ideguchi, Eiji*; Yokoyama, Rin*; Aoi, Nori*; Azaiez, F.*; Furutaka, Kazuyoshi; Hatsukawa, Yuichi; Kimura, Atsushi; Kisamori, Keiichi*; Kobayashi, Motoki*; et al.

Physical Review C, 103(3), p.034327_1 - 034327_8, 2021/03

 Times Cited Count:3 Percentile:68.98(Physics, Nuclear)

379 (Records 1-20 displayed on this page)