Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 63

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Visualising spatio-temporal distributions of assimilated carbon translocation and release in root systems of leguminous plants

Yin, Y.-G.*; Suzui, Nobuo*; Kurita, Keisuke; Miyoshi, Yuta*; Unno, Yusuke*; Fujimaki, Shu*; Nakamura, Takuji*; Shinano, Takuro*; Kawachi, Naoki*

Scientific Reports (Internet), 10, p.8446_1 - 8446_11, 2020/06

 Times Cited Count:11 Percentile:52.70(Multidisciplinary Sciences)

The release of rhizodeposits differs depending on the root position and is closely related to the assimilated carbon (C) supply. Therefore, quantifying the C partitioning over a short period may provide crucial information for clarifying root-soil carbon metabolism. A non-invasive method for visualising the translocation of recently assimilated C into the root system inside the rhizobox was established using $$^{11}$$CO$$_{2}$$ labelling and the positron-emitting tracer imaging system. The spatial distribution of recent $$^{11}$$C-photoassimilates translocated and released in the root system and soil were visualised for white lupin ($$Lupinus albus$$) and soybean ($$Glycine max$$). Our method enabled the quantification of the spatial C allocations in roots and soil, which may help to elucidate the relationship between C metabolism and nutrient cycling at specific locations of the root-soil system in response to environmental conditions over relatively short periods.

Journal Articles

Design loads and structural member modelling to shock-resistant design of buildings

Ikawa, Nozomu*; Mukai, Yoichi*; Nishida, Akemi; Hamamoto, Takuji*; Kano, Toshiya*; Ota, Toshiro*; Nakamura, Naohiro*; Komuro, Masato*; Takeuchi, Masato*

Proceedings of 12th International Conference on Shock and Impact Loads on Structures (SI 2017) (USB Flash Drive), p.259 - 268, 2017/06

Accidental actions on building structures involve impact and explosion loads. The design loads due to impact are determined by experiment data, impact simulation and energetics approach. These loads are presented in the form of load-time (F-t) curves caused by collision and explosion. It is assumed that the structure is rigid and immovable and that impacting body absorbs all the energy (i.e., hard impact condition is supposed), because this assumption gives conservative results in general. Responses of individual structural members directly-subjected to an impulsive load are evaluated. These responses are classified into three types; impulsive response, dynamic response, and quasi-static response. The maximum responses are basically estimated by direct integration method with a single-degree-of-freedom (SDOF) model. The procedure of the SDOF modelling based on the classification of types of members and failure modes is proposed in AIJ guideline.

Journal Articles

Initial results of the large liquid lithium test loop for the IFMIF target

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Nakamura, Kazuyuki; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

Construction and initial performance tests of EVEDA (Engineering Validation and Engineering Design Activities) Lithium Test Loop (ELTL) were completed and therefore one of the major milestones in the engineering validation toward IFMIF (International Fusion Materials Irradiation Facility) was accomplished. The ELTL, which holds 2.5-ton Li, is a proto-type of a Li target facility of the IFMIF and is the largest-ever liquid lithium loop in the history of the fusion research.

Journal Articles

Completion of IFMIF/EVEDA lithium test loop construction

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Fusion Engineering and Design, 87(5-6), p.418 - 422, 2012/08

 Times Cited Count:28 Percentile:86.89(Nuclear Science & Technology)

The EVEDA Li test loop (ELTL) successfully completed its construction and installation of a total of 2.5-ton Li in the frame work of the IFMIF/EVEDA as one of the ITER-BA. The construction was started on Nov. 2009 in the Oarai site of the Japan Atomic Energy Agency and completed on the middle of Nov. 2010 after passing an authority inspection by a fire department in Oarai town. Subsequently, the 2.5-ton Li was installed to the ELTL by using a glove box. The nitrogen concentration in the 2.5-ton Li was found to be 127 wppm.

Journal Articles

Engineering design of contact-type liquid level sensor for measuring thickness validation of liquid lithium jet in IFMIF/EVEDA lithium test loop

Kanemura, Takuji; Kondo, Hiroo; Suzuki, Sachiko*; Hoashi, Eiji*; Yamaoka, Nobuo*; Horiike, Hiroshi*; Furukawa, Tomohiro; Ida, Mizuho; Nakamura, Kazuyuki; Matsushita, Izuru*; et al.

Fusion Science and Technology, 62(1), p.258 - 264, 2012/07

 Times Cited Count:4 Percentile:30.61(Nuclear Science & Technology)

In the Engineering Validation and Engineering Design Activities (EVEDA) project of the International Fusion Materials Irradiation Facility (IFMIF), which is one of the Broader Approach (BA) activities, thickness variation of a liquid lithium (Li) jet simulating the IFMIF Li target is planned to be measured in the EVEDA Li Test Loop (ELTL). For this purpose, a contact-type liquid level sensor was developed, which can detect contacts between a probe and Li. Analysis of the contact signals yields average jet thickness and amplitude distribution. One of the key development requirements is to drive the probe by 0.1 mm step with positioning accuracy of 0.01 mm under the vacuum condition of 10$$^{-3}$$Pa. To satisfy such a requirement, the sensor's own weight load and moment load were calculated, and based on those calculation results a powerful motor and a friction-reduced ball screw were selected and strong structure was adopted. We have successfully completed the design work of the sensor.

Journal Articles

Gate stack technologies for silicon carbide power MOS devices

Hosoi, Takuji*; Kirino, Takashi*; Uenishi, Yusuke*; Ikeguchi, Daisuke*; Chanthaphan, A.*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; et al.

Workshop digest of 2012 Asia-Pacific Workshop on Fundamentals and Applications of Advanced Semiconductor Devices (AWAD 2012), p.22 - 25, 2012/06

Journal Articles

Synchrotron radiation photoelectron spectroscopy study of thermally grown oxides on 4H-SiC(0001) Si-face and (000-1) C-face substrates

Watanabe, Heiji*; Hosoi, Takuji*; Kirino, Takashi*; Uenishi, Yusuke*; Chanthaphan, A.*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; et al.

Materials Science Forum, 717-720, p.697 - 702, 2012/05

 Times Cited Count:2 Percentile:72.03(Materials Science, Multidisciplinary)

Journal Articles

Impact of interface defect passivation on conduction band offset at SiO$$_{2}$$/4H-SiC interface

Hosoi, Takuji*; Kirino, Takashi*; Chanthaphan, A.*; Uenishi, Yusuke*; Ikeguchi, Daisuke*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; et al.

Materials Science Forum, 717-720, p.721 - 724, 2012/05

 Times Cited Count:5 Percentile:90.61(Materials Science, Multidisciplinary)

Journal Articles

IFMIF/EVEDA lithium test loop; Design and fabrication technology of target assembly as a key component

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Kazuyuki; Ida, Mizuho; Watanabe, Kazuyoshi; Kanemura, Takuji; Wakai, Eiichi; Horiike, Hiroshi*; Yamaoka, Nobuo*; et al.

Nuclear Fusion, 51(12), p.123008_1 - 123008_12, 2011/12

 Times Cited Count:40 Percentile:82.03(Physics, Fluids & Plasmas)

The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.

Journal Articles

Completion of IFMIF/EVEDA Li test loop construction and commissioning

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Kanemura, Takuji; Ida, Mizuho; Watanabe, Kazuyoshi; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Proceedings of Plasma Conference 2011 (PLASMA 2011) (CD-ROM), 2 Pages, 2011/11

The EVEDA Li test loop (ELTL) successfully completed its construction and commissioning in the frame work of the IFMIF/EVEDA as one of the ITER-BA. The construction was started on Nov. 2009 in the O-arai site of the Japan Atomic Energy Agency and completed on the middle of Nov. 2010. In the commissioning conducted subsequently, the following tests were performed: (1) Li ingots installation into the ELTL, (2) Li charging and draining operation, (3) Li circulation tests. In a final phase of the circulation test, stable liquid Li flow at a velocity of 5 m/s was successfully achieved.

Journal Articles

Present status of Japanese tasks for lithium target facility under IFMIF/EVEDA

Nakamura, Kazuyuki; Furukawa, Tomohiro; Hirakawa, Yasushi; Kanemura, Takuji; Kondo, Hiroo; Ida, Mizuho; Niitsuma, Shigeto; Otaka, Masahiko; Watanabe, Kazuyoshi; Horiike, Hiroshi*; et al.

Fusion Engineering and Design, 86(9-11), p.2491 - 2494, 2011/10

 Times Cited Count:10 Percentile:58.96(Nuclear Science & Technology)

In IFMIF/EVEDA, tasks for lithium target system are shared to 5 validation tasks (LF1-5) and a design task (LF6). The purpose of LF1 task is to construct and operate the EVEDA lithium test loop, and JAEA has a main responsibility to the performance of the Li test loop. LF2 is a task for the diagnostics of the Li test loop and IFMIF design. Basic research for the diagnostics equipment has been completed, and the construction for the Li test loop will be finished before March in 2011. LF4 is a task for the purification systems with nitrogen and hydrogen. Basic research for the purification equipment has been completed, and the construction of the nitrogen system for the Li test loop will be finished before March in 2011. LF5 is a task for the remote handling system with the target assembly. JAEA has an idea to use the laser beam for cutting and welding of the lip part of the flanges. LF6 is a task for the design of the IFMIF based on the validation experiments of LF1-5.

Journal Articles

Target system of IFMIF-EVEDA in Japanese activities

Ida, Mizuho; Fukada, Satoshi*; Furukawa, Tomohiro; Hirakawa, Yasushi; Horiike, Hiroshi*; Kanemura, Takuji*; Kondo, Hiroo; Miyashita, Makoto; Nakamura, Hiroo; Sugiura, Hirokazu*; et al.

Journal of Nuclear Materials, 417(1-3), p.1294 - 1298, 2011/10

 Times Cited Count:4 Percentile:31.39(Materials Science, Multidisciplinary)

Engineering Validation and Engineering Design Activities (EVEDA) of the International Fusion Materials Irradiation Facility (IFMIF) was started. As a Japanese activity for the target system, EVEDA Lithium Test Loop simulating hydraulic and impurity conditions of IFMIF is under design and preparation for fabrication. Feasibility of thermo-mechanical structure of the target assembly and the replaceable back-plate made of F82H (a RAFM) and 316L (a stainless steel) is a key issue. Toward final validation on the EVEDA loop, diagnostics applicable to a high-speed free-surface Li flow and hot traps to control nitrogen and hydrogen in Li are under tests. For remote handling of target assemblies and the replaceable back-plates activated up to 50 dpa/y, lip weld on 316L-316L by laser and dissimilar weld on F82H-316L are under investigation. As engineering design of the IFMIF target system, water experiments and hydraulic/thermo-mechanical analyses of the back-plate are going.

Journal Articles

Engineering design of IFMIF/EVEDA lithium test loop; Electro-magnetic pump and pressure drop

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Iuchi, Hiroshi; Ida, Mizuho; Watanabe, Kazuyoshi; Kanemura, Takuji; Horiike, Hiroshi*; Yamaoka, Nobuo*; Matsushita, Izuru*; et al.

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 7 Pages, 2011/10

Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) were started from July 2007 under an international agreement called ITER Broader Approach. As a major Japanese activity, EVEDA Li test loop (ELTL) to simulate hydraulic and impurity conditions of IFMIF has already designed and is under construction, in which feasibility of hydraulic stability of the liquid Li target, the purification systems of hot traps are major key issues to be validated in this loop. This paper presents the engineering design of the main electro-magnetic pump of the ELTL including the pressure drop calculation and evaluation of the cavitation inception.

Journal Articles

Diagnostics of high-speed liquid lithium jet for IFMIF/EVEDA lithium test loop

Kanemura, Takuji; Kondo, Hiroo; Sugiura, Hirokazu*; Horiike, Hiroshi*; Yamaoka, Nobuo*; Furukawa, Tomohiro; Ida, Mizuho; Matsushita, Izuru*; Nakamura, Kazuyuki

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 7 Pages, 2011/10

Regarding R&Ds on the International Fusion Materials Irradiation Facility (IFMIF), validation of hydraulic stability of a liquid Li jet simulating the IFMIF Li target is of crucial importance and thus, is planned to be performed using EVEDA Li test loop. This paper presents diagnostics of the Li jet to be implemented in validation tests of the jet stability. In the tests, the following physical parameters need to be measured; thickness of the jet; height, length and frequency of free-surface waves; and Li evaporation rate. A high-speed video (HSV) camera is planned to be used for understanding of detailed structure of free-surface waves, and the HSV images are to be analyzed to obtain wave velocity and frequency. To measure jet thickness and wave height, a contact-type liquid level sensor is to be used. With regard to Li evaporation rate, deposition of Li on the specimens installed near the free surface is to be measured. In addition, frequency change of a crystal quartz will be utilized.

Journal Articles

Impact of stacked AlON/SiO$$_{2}$$ gate dielectrics for SiC power devices

Watanabe, Heiji*; Kirino, Takashi*; Uenishi, Yusuke*; Chanthaphan, A.*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; Hosoi, Takuji*; et al.

ECS Transactions, 35(2), p.265 - 274, 2011/05

 Times Cited Count:8 Percentile:92.63(Electrochemistry)

Journal Articles

Energy band structure of SiO$$_{2}$$/4H-SiC interfaces and its modulation induced by intrinsic and extrinsic interface charge transfer

Watanabe, Heiji*; Kirino, Takashi*; Kagei, Yusuke*; Harries, J.; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; Nakamura, Takashi*; Hosoi, Takuji*; et al.

Materials Science Forum, 679-680, p.386 - 389, 2011/03

 Times Cited Count:27 Percentile:99.51(Engineering, Multidisciplinary)

Journal Articles

Gate stack technologies for SiC power MOSFETs

Watanabe, Heiji*; Hosoi, Takuji*; Kirino, Takashi*; Uenishi, Yusuke*; Chanthaphan, A.*; Ikeguchi, Daisuke*; Yoshigoe, Akitaka; Teraoka, Yuden; Mitani, Shuhei*; Nakano, Yuki*; et al.

ECS Transactions, 41(3), p.77 - 90, 2011/00

 Times Cited Count:5 Percentile:89.76(Electrochemistry)

Journal Articles

Development of measurement technique for surface waves on high-speed liquid lithium jet for IFMIF target

Kondo, Hiroo; Kanemura, Takuji*; Sugiura, Hirokazu*; Yamaoka, Nobuo*; Ida, Mizuho; Nakamura, Hiroo; Matsushita, Izuru*; Muroga, Takeo*; Horiike, Hiroshi*

Fusion Engineering and Design, 85(7-9), p.1102 - 1105, 2010/12

 Times Cited Count:12 Percentile:60.89(Nuclear Science & Technology)

This paper reports a measurement technique for surface waves on a liquid lithium jet for a Li target of the International Fusion Materials Irradiation Facility. The characteristic of the waves was successfully clarified by a contact-type liquid level detector. As a result, it was found that the wave distributions in the all jet velocity range up to 15 m/s were conformed each other in normalized form and Rayleigh distribution which is one of popular model to show irregular water wave.

Journal Articles

Design and construction of IFMIF/EVEDA lithium test loop

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Ida, Mizuho; Matsushita, Izuru*; Horiike, Hiroshi*; Kanemura, Takuji; Sugiura, Hirokazu*; Yagi, Juro*; Suzuki, Akihiro*; et al.

Journal of Engineering for Gas Turbines and Power, 133(5), p.052910_1 - 052910_6, 2010/12

 Times Cited Count:7 Percentile:37.44(Engineering, Mechanical)

As a major Japanese activity for the IFMIF/EVEDA, EVEDA Li Test Loop (ELTL) to simulate hydraulic and impurity conditions of IFMIF is under design and preparation for fabrication. Feasibility of hydraulic stability of the liquid Li target and the purification systems of hot traps are major key issues to be validated. This paper presents the current status of the design and construction of the EVEDA Li Test Loop. Detail designs of the loop components such as the target assembly, tanks, an electro-magnetic pump and flow meter and a cold trap for purification system are described in addition to the flow diagnostics system and the hot traps.

Journal Articles

Engineering design and construction of IFMIF/EVEDA lithium test loop; Design and fabrication of integrated target assembly

Kondo, Hiroo; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakamura, Hiroo*; Ida, Mizuho; Watanabe, Kazuyoshi; Miyashita, Makoto*; Horiike, Hiroshi*; Yamaoka, Nobuo*; Kanemura, Takuji; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

The Engineering Validation and Engineering Design Activity (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) is proceeded as one of the ITER Broader Approach (BA) activities. The EVEDA Li test loop (ELTL) is aimed at validating stability of the Li target and feasibility of a Li purification system as the key issues. In this paper, the design of the ELTL especially of a target assembly in which the Li target is produced by the contraction nozzle is presented.

63 (Records 1-20 displayed on this page)