Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Senzaki, Tatsuya; Arai, Yoichi; Yano, Kimihiko; Sato, Daisuke; Tada, Kohei; Ogi, Hiromichi*; Kawanobe, Takayuki*; Ono, Shimpei; Nakamura, Masahiro; Kitawaki, Shinichi; et al.
JAEA-Testing 2022-001, 28 Pages, 2022/05
In preparation for the decommissioning of Laboratory B of the Nuclear Fuel Cycle Engineering Laboratory, the nuclear fuel material that had been stored in the glove box for a long time was moved to the Chemical Processing Facility (CPF). This nuclear fuel material was stored with sealed by a polyvinyl chloride (PVC) bag in the storage. Since it was confirmed that the PVC bag swelled during storage, it seems that any gas was generated by radiolysis of the some components contained in the nuclear fuel material. In order to avoid breakage of the PVC bag and keep it safety for long time, we began the study on the stabilization treatment of the nuclear fuel material. First, in order to clarify the properties of nuclear fuel material, radioactivity analysis, component analysis, and thermal analysis were carried out. From the results of thermal analysis, the existence of organic matter was clarified. Then, ion exchange resin with similar thermal characteristics was selected and the thermal decomposition conditions were investigated. From the results of these analyzes and examinations, the conditions for thermal decomposition of the nuclear fuel material contained with organic matter was established. Performing a heat treatment of a small amount of nuclear fuel material in order to confirm the safety, after which the treatment amount was scaled up. It was confirmed by the weight change after the heat treatment that the nuclear fuel material contained with organic matter was completely decomposed.
Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Sato, Yaoki*; et al.
Journal of Nuclear Science and Technology, 59(5), p.647 - 655, 2022/05
Times Cited Count:1 Percentile:30.57(Nuclear Science & Technology)Rovira Leveroni, G.; Katabuchi, Tatsuya*; Tosaka, Kenichi*; Matsuura, Shota*; Kodama, Yu*; Nakano, Hideto*; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki
Journal of Nuclear Science and Technology, 59(1), p.110 - 122, 2022/01
Times Cited Count:1 Percentile:30.57(Nuclear Science & Technology)Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*
Journal of Nuclear Science and Technology, 11 Pages, 2022/00
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Kodama, Yu*; Katabuchi, Tatsuya*; Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Nobuyuki; Iwamoto, Osamu; Hori, Junichi*; Shibahara, Yuji*; et al.
Journal of Nuclear Science and Technology, 58(11), p.1159 - 1164, 2021/11
Times Cited Count:2 Percentile:53.86(Nuclear Science & Technology)Nakamura, Tatsuya; To, Kentaro; Koizumi, Tomokatsu; Kiyanagi, Ryoji; Ohara, Takashi; Ebine, Masumi; Sakasai, Kaoru
Proceedings of 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2020), Vol.1, p.483 - 484, 2021/09
Two-dimensional neutron detectors were developed for the extension of SENJU time-of-flight Laue single crystal neutron diffractometer in J-PARC MLF. The detectors are to be installed at the additional detector bank for the SENJU instrument. The detector module is made based on ZnS scintillator and wavelength-shifting fiber technology, where each detector module maintains a neutron-sensitive area of 256256 mm with a pixel size of 4
4 mm. To meet the tight space limitation in the instrument, the detector was designed as compact as possible. The detector has a depth of 170 mm, which is about 40% smaller than that of the original SENJU detector. All four produced detectors exhibited similar detector performances: detection efficiency 50-60% for 2-
neutron,
Co gamma-ray sensitivity 1
10
, count uniformity 3-6%.
Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Terada, Kazushi*; Kodama, Yu*; Nakano, Hideto*; et al.
Nuclear Instruments and Methods in Physics Research A, 1003, p.165318_1 - 165318_10, 2021/07
Times Cited Count:3 Percentile:68.44(Instruments & Instrumentation)Furuya, Osamu*; Fujita, Satoshi*; Muta, Hitoshi*; Otori, Yasuki*; Itoi, Tatsuya*; Okamura, Shigeki*; Minagawa, Keisuke*; Nakamura, Izumi*; Fujimoto, Shigeru*; Otani, Akihito*; et al.
Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 6 Pages, 2021/07
Since the Fukushima accident, with the higher safety requirements of nuclear facilities in Japan, suppliers, manufacturers and academic societies have been actively considering the reconstruction of the safety of nuclear facilities from various perspectives. The Nuclear Regulation Authority has formulated new regulatory standards and is in operation. The new regulatory standards are based on defense in depth, and have significantly raised the levels of natural hazards and have requested to strengthen the countermeasures from the perspective of preventing the simultaneous loss of safety functions due to common factors. Facilities for dealing with specific serious accidents are required to have robustness to ensure functions against earthquakes that exceed the design standards to a certain extent. In addition, since the probabilistic risk assessment (PRA) and the safety margin evaluation are performed to include the range beyond the design assumption in the safety improvement evaluation, it is very important to extent the special knowledge in the strength of important equipment for seismic safety. This paper summarizes the research and examination results of specialized knowledge on the concept of maintaining the functions of important seismic facilities and the damage index to be considered by severe earthquakes. In the other paper, the study on reliability of seismic capacity analysis for important equipment in nuclear facilities will be reported.
Nakamura, Tatsuya; Kawasaki, Takuro; To, Kentaro; Harjo, S.; Sakasai, Kaoru; Aizawa, Kazuya
JPS Conference Proceedings (Internet), 33, p.011097_1 - 011097_6, 2021/03
A large area, two-dimensional scintillation neutron detector was developed for Takumi diffractometer in the J-PARC MLF. The detector is made based on a scintillator/wavelength shifting fiber technology. The detector has a neutron-sensitive area of 32 32 cm with a pixel size of 5
5 mm, which is about 1.5-fold larger than the SENJU detector TAKUMI is one of the neutron diffractometers in the MLF dedicated to use for engineering material research. The developed detector array adds new capabilities to the instrument to measure two-dimensional data collection at the back-scattering angles with a better time-of-flight resolution.
Kawakita, Yukinobu; Kikuchi, Tatsuya*; Tahara, Shuta*; Nakamura, Mitsutaka; Inamura, Yasuhiro; Maruyama, Kenji*; Yamauchi, Yasuhiro*; Kawamura, Seiko; Nakajima, Kenji
JPS Conference Proceedings (Internet), 33, p.011071_1 - 011071_6, 2021/03
CuI is a well-known superionic conductor in a high temperature solid phase where the mobile cations migrate between interstitial sites in the f.c.c. sublattice formed by iodine ions. Even in the molten state, it shows several features suggesting collective or cooperative ionic motion. MD results show that Cu diffuses much faster than I. The Cu-Cu partial structure factor have a FSDP which indicates a medium-range ordering of Cu ions. Moreover the Cu-Cu partial pair distribution deeply penetrates into the nearest neighboring Cu-I shell. To reveal origin such anomalous behaviors of molten CuI, we performed quaiselastic neutron scattering (QENS) by the disk-chopper spectrometer AMATERAS at MLF, J-PARC. To interpret the total dynamic structure factor obtained from coherent QENS, the mode distribution analysis was applied. It is found that the motion of iodine is a kind of fluctuating within an almost local area while Cu ions diffuse much faster than iodine ions.
Yamazoe, Seiji*; Yamamoto, Akira*; Hosokawa, Saburo*; Fukuda, Ryoichi*; Hara, Kenji*; Nakamura, Mitsutaka; Kamazawa, Kazuya*; Tsukuda, Tatsuya*; Yoshida, Hisao*; Tanaka, Tsunehiro*
Catalysis Science & Technology, 11(1), p.116 - 123, 2021/01
Times Cited Count:4 Percentile:43.05(Chemistry, Physical)Katabuchi, Tatsuya*; Toh, Yosuke; Mizumoto, Motoharu*; Saito, Tatsuhiro*; Terada, Kazushi*; Kimura, Atsushi; Nakamura, Shoji; Huang, M.*; Rovira Leveroni, G.; Igashira, Masayuki*
European Physical Journal A, 57(1), p.4_1 - 4_4, 2021/01
Times Cited Count:0 Percentile:0.02(Physics, Nuclear)Katabuchi, Tatsuya*; Hori, Junichi*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*; Tosaka, Kenichi*; Endo, Shunsuke; et al.
JAEA-Conf 2020-001, p.5 - 9, 2020/12
Iwamoto, Nobuyuki; Nakamura, Shoji; Kimura, Atsushi; Katabuchi, Tatsuya*; Rovira, G.*; Hara, Kaoru*; Iwamoto, Osamu
EPJ Web of Conferences, 239, p.17016_1 - 17016_4, 2020/09
Times Cited Count:0 Percentile:0.1Katabuchi, Tatsuya*; Iwamoto, Osamu; Hori, Junichi*; Kimura, Atsushi; Iwamoto, Nobuyuki; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*; Rovira, G.*; Matsuura, Shota*
EPJ Web of Conferences, 239, p.01044_1 - 01044_4, 2020/09
Times Cited Count:1 Percentile:79.71Nakamura, Tatsuya; To, Kentaro; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru
Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2019), Vol.1, p.735 - 736, 2020/08
A large area, position-sensitive scintillation neutron detector was developed for upgrading the SENJU, time-of-flight Laue single crystal neutron diffractometer, in J-PARC MLF. The detector has a neutron-sensitive area of 512 512 mm with a pixel size of 4
4 mm. The detector was developed for upgrading of the SENJU instrument. The large area detector is to be installed below the vacuum tank to enlarge a covering solid angle. A
Li:ZnS (Ag) scintillator and wavelength-shifting fiber technologies are employed. Each fiber channel is read out individually with photon counting mode. The electronics boards are implemented at the backside of the detector, enabling the detector depth as short as 20 cm. The detector exhibited a detection efficiency of 45% for thermal neutron. No degradation in fiber position and in neutron sensitivity has been observed over one year after production. In this paper, detector design and detector performances are presented.
To, Kentaro; Nakamura, Tatsuya; Sakasai, Kaoru; Yamagishi, Hideshi*
Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2019), Vol.1, p.447 - 449, 2020/08
A real-time data display and storage device was developed for pulsed neutron scattering experiments using the time-of-flight method. The device contains two sets of field programmable gate arrays and on-board microcomputers for data display and storage. The developed device can determine the time-of-flight and time-resolved neutron position data with a time range from 0 to 40 ms using a beam of pulsed neutrons at 25 Hz from an experimental facility. Operation tests were performed using test signals that simulate the neutron detector output signals. It was found that the device could separate double pulses with a time interval of 1 s; furthermore, it could measure the continuous pulses with a frequency of 1 MHz. Consequently, it was confirmed that the developed device demonstrated a counting rate capability of beyond 1 Mcps.
Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Sato, Mitsuteru*; Ushio, Tomoo*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Yonetoku, Daisuke*; Sawano, Tatsuya*; et al.
Journal of Geophysical Research; Atmospheres, 125(4), p.e2019JD031730_1 - e2019JD031730_11, 2020/02
Times Cited Count:18 Percentile:86.79(Meteorology & Atmospheric Sciences)Rovira, G.*; Katabuchi, Tatsuya*; Tosaka, Kenichi*; Matsuura, Shota*; Terada, Kazushi*; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki; Segawa, Mariko; et al.
Journal of Nuclear Science and Technology, 57(1), p.24 - 39, 2020/01
Times Cited Count:7 Percentile:78.88(Nuclear Science & Technology)Katabuchi, Tatsuya*; Iwamoto, Osamu; Hori, Junichi*; Iwamoto, Nobuyuki; Kimura, Atsushi; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*
JAEA-Conf 2019-001, p.193 - 197, 2019/11