Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 464

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Stabilization treatment of nuclear fuel material contained with organic matter

Senzaki, Tatsuya; Arai, Yoichi; Yano, Kimihiko; Sato, Daisuke; Tada, Kohei; Ogi, Hiromichi*; Kawanobe, Takayuki*; Ono, Shimpei; Nakamura, Masahiro; Kitawaki, Shinichi; et al.

JAEA-Testing 2022-001, 28 Pages, 2022/05

JAEA-Testing-2022-001.pdf:2.33MB

In preparation for the decommissioning of Laboratory B of the Nuclear Fuel Cycle Engineering Laboratory, the nuclear fuel material that had been stored in the glove box for a long time was moved to the Chemical Processing Facility (CPF). This nuclear fuel material was stored with sealed by a polyvinyl chloride (PVC) bag in the storage. Since it was confirmed that the PVC bag swelled during storage, it seems that any gas was generated by radiolysis of the some components contained in the nuclear fuel material. In order to avoid breakage of the PVC bag and keep it safety for long time, we began the study on the stabilization treatment of the nuclear fuel material. First, in order to clarify the properties of nuclear fuel material, radioactivity analysis, component analysis, and thermal analysis were carried out. From the results of thermal analysis, the existence of organic matter was clarified. Then, ion exchange resin with similar thermal characteristics was selected and the thermal decomposition conditions were investigated. From the results of these analyzes and examinations, the conditions for thermal decomposition of the nuclear fuel material contained with organic matter was established. Performing a heat treatment of a small amount of nuclear fuel material in order to confirm the safety, after which the treatment amount was scaled up. It was confirmed by the weight change after the heat treatment that the nuclear fuel material contained with organic matter was completely decomposed.

Journal Articles

KeV-neutron capture cross-section measurement of $$^{197}$$Au with a Cr-filtered neutron beam at the ANNRI beamline of MLF/J-PARC

Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*; Sato, Yaoki*; et al.

Journal of Nuclear Science and Technology, 59(5), p.647 - 655, 2022/05

 Times Cited Count:1 Percentile:30.57(Nuclear Science & Technology)

Journal Articles

KeV-region analysis of the neutron capture cross-section of $$^{237}$$Np

Rovira Leveroni, G.; Katabuchi, Tatsuya*; Tosaka, Kenichi*; Matsuura, Shota*; Kodama, Yu*; Nakano, Hideto*; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki

Journal of Nuclear Science and Technology, 59(1), p.110 - 122, 2022/01

 Times Cited Count:1 Percentile:30.57(Nuclear Science & Technology)

Journal Articles

$$^{241}$$Am neutron capture cross section in the keV region using Si and Fe-filtered neutron beams

Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Kodama, Yu*; Nakano, Hideto*

Journal of Nuclear Science and Technology, 11 Pages, 2022/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Measurements of the neutron capture cross section of $$^{243}$$Am around 23.5 keV

Kodama, Yu*; Katabuchi, Tatsuya*; Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Nobuyuki; Iwamoto, Osamu; Hori, Junichi*; Shibahara, Yuji*; et al.

Journal of Nuclear Science and Technology, 58(11), p.1159 - 1164, 2021/11

 Times Cited Count:2 Percentile:53.86(Nuclear Science & Technology)

Journal Articles

Two-dimensional scintillation neutron detectors for the extension of SENJU diffractometer

Nakamura, Tatsuya; To, Kentaro; Koizumi, Tomokatsu; Kiyanagi, Ryoji; Ohara, Takashi; Ebine, Masumi; Sakasai, Kaoru

Proceedings of 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2020), Vol.1, p.483 - 484, 2021/09

Two-dimensional neutron detectors were developed for the extension of SENJU time-of-flight Laue single crystal neutron diffractometer in J-PARC MLF. The detectors are to be installed at the additional detector bank for the SENJU instrument. The detector module is made based on ZnS scintillator and wavelength-shifting fiber technology, where each detector module maintains a neutron-sensitive area of 256$$times$$256 mm with a pixel size of 4$$times$$4 mm. To meet the tight space limitation in the instrument, the detector was designed as compact as possible. The detector has a depth of 170 mm, which is about 40% smaller than that of the original SENJU detector. All four produced detectors exhibited similar detector performances: detection efficiency 50-60% for 2-${AA}$ neutron, $$^{60}$$Co gamma-ray sensitivity 1$$times$$10$$^{-5}$$, count uniformity 3-6%.

Journal Articles

Neutron beam filter system for fast neutron cross-section measurement at the ANNRI beamline of MLF/J-PARC

Rovira Leveroni, G.; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Iwamoto, Osamu; Iwamoto, Nobuyuki; Katabuchi, Tatsuya*; Terada, Kazushi*; Kodama, Yu*; Nakano, Hideto*; et al.

Nuclear Instruments and Methods in Physics Research A, 1003, p.165318_1 - 165318_10, 2021/07

 Times Cited Count:3 Percentile:68.44(Instruments & Instrumentation)

Journal Articles

Research and examination of seismic safety evaluation and function maintenance for important equipment in nuclear facilities

Furuya, Osamu*; Fujita, Satoshi*; Muta, Hitoshi*; Otori, Yasuki*; Itoi, Tatsuya*; Okamura, Shigeki*; Minagawa, Keisuke*; Nakamura, Izumi*; Fujimoto, Shigeru*; Otani, Akihito*; et al.

Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 6 Pages, 2021/07

Since the Fukushima accident, with the higher safety requirements of nuclear facilities in Japan, suppliers, manufacturers and academic societies have been actively considering the reconstruction of the safety of nuclear facilities from various perspectives. The Nuclear Regulation Authority has formulated new regulatory standards and is in operation. The new regulatory standards are based on defense in depth, and have significantly raised the levels of natural hazards and have requested to strengthen the countermeasures from the perspective of preventing the simultaneous loss of safety functions due to common factors. Facilities for dealing with specific serious accidents are required to have robustness to ensure functions against earthquakes that exceed the design standards to a certain extent. In addition, since the probabilistic risk assessment (PRA) and the safety margin evaluation are performed to include the range beyond the design assumption in the safety improvement evaluation, it is very important to extent the special knowledge in the strength of important equipment for seismic safety. This paper summarizes the research and examination results of specialized knowledge on the concept of maintaining the functions of important seismic facilities and the damage index to be considered by severe earthquakes. In the other paper, the study on reliability of seismic capacity analysis for important equipment in nuclear facilities will be reported.

Journal Articles

A Two-dimensional scintillation neutron detector for TAKUMI diffractometer in J-PARC MLF

Nakamura, Tatsuya; Kawasaki, Takuro; To, Kentaro; Harjo, S.; Sakasai, Kaoru; Aizawa, Kazuya

JPS Conference Proceedings (Internet), 33, p.011097_1 - 011097_6, 2021/03

A large area, two-dimensional scintillation neutron detector was developed for Takumi diffractometer in the J-PARC MLF. The detector is made based on a scintillator/wavelength shifting fiber technology. The detector has a neutron-sensitive area of 32 $$times$$ 32 cm with a pixel size of 5 $$times$$ 5 mm, which is about 1.5-fold larger than the SENJU detector TAKUMI is one of the neutron diffractometers in the MLF dedicated to use for engineering material research. The developed detector array adds new capabilities to the instrument to measure two-dimensional data collection at the back-scattering angles with a better time-of-flight resolution.

Journal Articles

Mode distribution analysis for superionic melt of CuI by coherent quasielastic neutron scattering

Kawakita, Yukinobu; Kikuchi, Tatsuya*; Tahara, Shuta*; Nakamura, Mitsutaka; Inamura, Yasuhiro; Maruyama, Kenji*; Yamauchi, Yasuhiro*; Kawamura, Seiko; Nakajima, Kenji

JPS Conference Proceedings (Internet), 33, p.011071_1 - 011071_6, 2021/03

BB2019-1144.pdf:0.7MB

CuI is a well-known superionic conductor in a high temperature solid phase where the mobile cations migrate between interstitial sites in the f.c.c. sublattice formed by iodine ions. Even in the molten state, it shows several features suggesting collective or cooperative ionic motion. MD results show that Cu diffuses much faster than I. The Cu-Cu partial structure factor have a FSDP which indicates a medium-range ordering of Cu ions. Moreover the Cu-Cu partial pair distribution deeply penetrates into the nearest neighboring Cu-I shell. To reveal origin such anomalous behaviors of molten CuI, we performed quaiselastic neutron scattering (QENS) by the disk-chopper spectrometer AMATERAS at MLF, J-PARC. To interpret the total dynamic structure factor obtained from coherent QENS, the mode distribution analysis was applied. It is found that the motion of iodine is a kind of fluctuating within an almost local area while Cu ions diffuse much faster than iodine ions.

Journal Articles

Identification of hydrogen species on Pt/Al$$_{2}$$O$$_{3}$$ by ${it in situ}$ inelastic neutron scattering and their reactivity with ethylene

Yamazoe, Seiji*; Yamamoto, Akira*; Hosokawa, Saburo*; Fukuda, Ryoichi*; Hara, Kenji*; Nakamura, Mitsutaka; Kamazawa, Kazuya*; Tsukuda, Tatsuya*; Yoshida, Hisao*; Tanaka, Tsunehiro*

Catalysis Science & Technology, 11(1), p.116 - 123, 2021/01

 Times Cited Count:4 Percentile:43.05(Chemistry, Physical)

Journal Articles

Discovery of a new low energy neutron resonance of $$^{89}$$Y

Katabuchi, Tatsuya*; Toh, Yosuke; Mizumoto, Motoharu*; Saito, Tatsuhiro*; Terada, Kazushi*; Kimura, Atsushi; Nakamura, Shoji; Huang, M.*; Rovira Leveroni, G.; Igashira, Masayuki*

European Physical Journal A, 57(1), p.4_1 - 4_4, 2021/01

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

Journal Articles

Neutron capture cross section measurement of minor actinides in fast neutron energy region for study on nuclear transmutation system

Katabuchi, Tatsuya*; Hori, Junichi*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*; Tosaka, Kenichi*; Endo, Shunsuke; et al.

JAEA-Conf 2020-001, p.5 - 9, 2020/12

Journal Articles

Evaluation of gamma-ray strength function based on measured gamma-ray pulse-height spectra in time-of-flight neutron capture experiments

Iwamoto, Nobuyuki; Nakamura, Shoji; Kimura, Atsushi; Katabuchi, Tatsuya*; Rovira, G.*; Hara, Kaoru*; Iwamoto, Osamu

EPJ Web of Conferences, 239, p.17016_1 - 17016_4, 2020/09

 Times Cited Count:0 Percentile:0.1

Journal Articles

Fast neutron capture reaction data measurement of minor actinides for development of nuclear transmutation systems

Katabuchi, Tatsuya*; Iwamoto, Osamu; Hori, Junichi*; Kimura, Atsushi; Iwamoto, Nobuyuki; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*; Rovira, G.*; Matsuura, Shota*

EPJ Web of Conferences, 239, p.01044_1 - 01044_4, 2020/09

 Times Cited Count:1 Percentile:79.71

Journal Articles

A Large area position-sensitive scintillation neutron detector for upgrading SENJU diffractometer

Nakamura, Tatsuya; To, Kentaro; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru

Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2019), Vol.1, p.735 - 736, 2020/08

A large area, position-sensitive scintillation neutron detector was developed for upgrading the SENJU, time-of-flight Laue single crystal neutron diffractometer, in J-PARC MLF. The detector has a neutron-sensitive area of 512 $$times$$ 512 mm with a pixel size of 4 $$times$$ 4 mm. The detector was developed for upgrading of the SENJU instrument. The large area detector is to be installed below the vacuum tank to enlarge a covering solid angle. A $$^{6}$$Li:ZnS (Ag) scintillator and wavelength-shifting fiber technologies are employed. Each fiber channel is read out individually with photon counting mode. The electronics boards are implemented at the backside of the detector, enabling the detector depth as short as 20 cm. The detector exhibited a detection efficiency of 45% for thermal neutron. No degradation in fiber position and in neutron sensitivity has been observed over one year after production. In this paper, detector design and detector performances are presented.

Journal Articles

Real-time data display and storage device for pulsed neutron scattering experiment

To, Kentaro; Nakamura, Tatsuya; Sakasai, Kaoru; Yamagishi, Hideshi*

Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2019), Vol.1, p.447 - 449, 2020/08

A real-time data display and storage device was developed for pulsed neutron scattering experiments using the time-of-flight method. The device contains two sets of field programmable gate arrays and on-board microcomputers for data display and storage. The developed device can determine the time-of-flight and time-resolved neutron position data with a time range from 0 to 40 ms using a beam of pulsed neutrons at 25 Hz from an experimental facility. Operation tests were performed using test signals that simulate the neutron detector output signals. It was found that the device could separate double pulses with a time interval of 1 $$mu$$s; furthermore, it could measure the continuous pulses with a frequency of 1 MHz. Consequently, it was confirmed that the developed device demonstrated a counting rate capability of beyond 1 Mcps.

Journal Articles

High peak-current lightning discharges associated with downward terrestrial gamma-ray flashes

Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Sato, Mitsuteru*; Ushio, Tomoo*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Yonetoku, Daisuke*; Sawano, Tatsuya*; et al.

Journal of Geophysical Research; Atmospheres, 125(4), p.e2019JD031730_1 - e2019JD031730_11, 2020/02

 Times Cited Count:18 Percentile:86.79(Meteorology & Atmospheric Sciences)

Journal Articles

Neutron capture cross-section measurement and resolved resonance analysis of $$^{237}$$Np

Rovira, G.*; Katabuchi, Tatsuya*; Tosaka, Kenichi*; Matsuura, Shota*; Terada, Kazushi*; Iwamoto, Osamu; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Nobuyuki; Segawa, Mariko; et al.

Journal of Nuclear Science and Technology, 57(1), p.24 - 39, 2020/01

 Times Cited Count:7 Percentile:78.88(Nuclear Science & Technology)

Journal Articles

Neutron capture reaction data measurement of minor actinides in fast neutron energy region for study on nuclear transmutation system

Katabuchi, Tatsuya*; Iwamoto, Osamu; Hori, Junichi*; Iwamoto, Nobuyuki; Kimura, Atsushi; Nakamura, Shoji; Shibahara, Yuji*; Terada, Kazushi*

JAEA-Conf 2019-001, p.193 - 197, 2019/11

464 (Records 1-20 displayed on this page)