Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Mizuta, Yoshio*; Hosokai, Tomonao*; Masuda, Shinichi*; Zhidkov, A.*; Makito, Keigo*; Nakanii, Nobuhiko*; Kajino, Shohei*; Nishida, Akinori*; Kando, Masaki; Mori, Michiaki; et al.
Physical Review Special Topics; Accelerators and Beams, 15(12), p.121301_1 - 121301_10, 2012/12
Times Cited Count:21 Percentile:71.29(Physics, Nuclear)Kuramitsu, Yasuhiro*; Nakanii, Nobuhiko*; Kondo, Kiminori; Sakawa, Yoichi*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; et al.
Physical Review E, 83(2), p.026401_1 - 026401_6, 2011/02
Times Cited Count:17 Percentile:66.17(Physics, Fluids & Plasmas)An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma.
Kuramitsu, Yasuhiro*; Nakanii, Nobuhiko*; Kondo, Kiminori; Sakawa, Yoichi*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; et al.
Physics of Plasmas, 18(1), p.010701_1 - 010701_4, 2011/01
Times Cited Count:20 Percentile:62.85(Physics, Fluids & Plasmas)Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of 2.
Nakanii, Nobuhiko*; Kondo, Kiminori; Kuramitsu, Yasuhiro*; Mori, Yoshitaka*; Miura, Eisuke*; Tsuji, Kazuki*; Kimura, Kazuya*; Fukumochi, Shuji*; Kashihara, Mamoru*; Tanimoto, Tsuyoshi*; et al.
Applied Physics Letters, 93(8), p.081501_1 - 081501_3, 2008/08
Times Cited Count:4 Percentile:18.46(Physics, Applied)Energetic electrons were generated by the interaction of a high-intensity laser pulse with a plasma preformed from a hollow plastic cylinder via laser-driven implosion. The spectra of a comparatively high-density plasma had a bump around 10 MeV. Simple numerical calculations explained the spectra obtained in this experiment. This indicates that the plasma tube has sufficient potential to convert a Maxwellian spectrum to a comparatively narrow spectrum.
Nakanii, Nobuhiko*; Kondo, Kiminori; Yabuuchi, Toshinori*; Tsuji, Kazuki*; Tanaka, Kazuo*; Suzuki, Shinsuke*; Asaka, Takao*; Yanagida, Kenichi*; Hanaki, Hirofumi*; Kobayashi, Takashi*; et al.
Review of Scientific Instruments, 79(6), p.166102_1 - 066102_3, 2008/06
An imaging plate has been used as a useful detector of energetic electrons in laser electron acceleration and laser fusion studies. The absolute sensitivity of an imaging plate was calibrated at 1 GeV electron energy using the injector Linac of SPring-8. The sensitivity curve obtained up to 100 MeV in a previous study was extended successfully to GeV range.