Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 21

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of double-differential neutron yields for iron, lead, and bismuth induced by 107-MeV protons for research and development of accelerator-driven systems

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta*; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

EPJ Web of Conferences, 284, p.01023_1 - 01023_4, 2023/05

For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron, lead, and bismuth have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics. The measured TTNYs and DDXs were compared with calculations by the Monte Carlo transport code PHITS with its default physics model of INCL version 4.6 combined with GEM and those with the JENDL-4.0/HE nuclear data library.

Journal Articles

Measurement of 107-MeV proton-induced double-differential thick target neutron yields for Fe, Pb, and Bi using a fixed-field alternating gradient accelerator at Kyoto University

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

Journal of Nuclear Science and Technology, 60(4), p.435 - 449, 2023/04

 Times Cited Count:0 Percentile:71.05(Nuclear Science & Technology)

Double-differential thick target neutron yields (TTNYs) for Fe, Pb, and Bi targets induced by 107-MeV protons were measured using the fixed-field alternating gradient accelerator at Kyoto University for research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research at the Kyoto University Critical Assembly (KUCA). Note that TTNYs were obtained with the time-of-flight method using a neutron detector system comprising eight neutron detectors; each detector has a small NE213 liquid organic scintillator and photomultiplier tube. The TTNYs obtained were compared with calculation results using Monte Carlo-based spallation models (i.e., INCL4.6/GEM, Bertini/GEM, JQMD/GEM, and JQMD/SMM/GEM) and the evaluated high-energy nuclear data library, i.e., JENDL-4.0/HE, implemented in the particle and heavy iontransport code system (PHITS). All models, including JENDL-4.0/HE, failed to predict high-energy peaks at a detector angle of 5$$^{circ}$$. Comparing the energy- and angle-integrated spallation neutron yields at energies of $$le$$20 MeV estimated using the measured TTNYs and the PHITS indicated that INCL4.6/GEM would be suitable for the Monte Carlo transport simulation of ADS reactor physics experiments at the KUCA.

Journal Articles

Measurement of 107-MeV proton-induced double-differential neutron yields for iron for research and development of accelerator-driven systems

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; Yashima, Hiroshi*; Nishio, Katsuhisa; et al.

JAEA-Conf 2022-001, p.129 - 133, 2022/11

For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors composed of the NE213 liquid organic scintillators and photomultiplier tubes, which were connected to a multi-channel digitizer mounted with a field-programmable gate array (FPGA), for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination applying the gate integration method to the FPGA. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2020

Nakano, Masanao; Nakada, Akira; Kanai, Katsuta; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei; Kubota, Tomohiro; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.

JAEA-Review 2021-040, 118 Pages, 2021/12

JAEA-Review-2021-040.pdf:2.48MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2020. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2019

Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei; Kubota, Tomohiro; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.

JAEA-Review 2020-070, 120 Pages, 2021/02

JAEA-Review-2020-070.pdf:2.47MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2019. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2018

Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.

JAEA-Review 2019-045, 120 Pages, 2020/03

JAEA-Review-2019-045.pdf:2.54MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2018. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2017

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; et al.

JAEA-Review 2018-028, 120 Pages, 2019/02

JAEA-Review-2018-028.pdf:2.69MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2017. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2016

Nakano, Masanao; Fujita, Hiroki; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2017-037, 119 Pages, 2018/03

JAEA-Review-2017-037.pdf:2.58MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2016. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2015

Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Nagaoka, Mika; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2017-001, 115 Pages, 2017/03

JAEA-Review-2017-001.pdf:3.57MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2015. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2014

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2015-030, 115 Pages, 2015/12

JAEA-Review-2015-030.pdf:25.28MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2014. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Effect of the introduction of amide oxygen into 1,10-phenanthroline on the extraction and complexation of trivalent lanthanide in acidic condition

Kobayashi, Toru; Yaita, Tsuyoshi; Suzuki, Shinichi; Shiwaku, Hideaki; Okamoto, Yoshihiro; Akutsu, Kazuhiro*; Nakano, Yoshiharu*; Fujii, Yuki*

Separation Science and Technology, 45(16), p.2431 - 2436, 2010/11

 Times Cited Count:33 Percentile:70.54(Chemistry, Multidisciplinary)

Journal Articles

Structural studies of lanthanide nitrate-${it N,N'}$-dimethyl-${it N,N'}$-diphenylpyridine-2,6-dicarboxyamide complexes

Fujiwara, Asako; Nakano, Yoshiharu*; Yaita, Tsuyoshi; Okuno, Kenji*

Journal of Alloys and Compounds, 456(1-2), p.429 - 435, 2008/05

 Times Cited Count:17 Percentile:64.57(Chemistry, Physical)

The tridentate ligand ${it N,N'}$-dimethyl-${it N,N'}$-diphenylpyridine-2,6-dicarboxyamide (DMDPhPDA) and the corresponding lanthanum complex [La(NO$$_{3}$$)$$_{3}$$(DMDPhPDA)$$_{2}$$] have been prepared and structurally characterised. In the lanthanum complex, two DMDPhPDA molecules coordinated to La(III) in a tridentate fashion and to three nitrate ions in a bidentate fashion make the lanthanum atom 12-coordinate. The stability constants determined by spectrophotometric titration suggest that [Ln(DMDPhPDA)$$_{2}$$]$$^{3+}$$ is the primary product in nitrate media and [Ln(DMDPhPDA)$$_{3}$$]$$^{3+}$$ is difficult to form. However, [Ln(DMDPhPDA)$$_{2}$$]$$^{3+}$$ could not be distinguished in $$^{13}$$C NMR spectra. The $$^{13}$$C NMR titration results imply that a fast ligand exchange process takes place.

Journal Articles

Facile preparation and the crystal structure of ${it N,N'}$-dialkyl-2,6-pyridinedimethanaminium halide

Kobayashi, Toru; Yaita, Tsuyoshi; Sugo, Yumi; Suda, Hiroki*; Suzuki, Shinji*; Fujii, Yuki*; Nakano, Yoshiharu*

Journal of Heterocyclic Chemistry, 43(3), p.549 - 557, 2006/05

 Times Cited Count:5 Percentile:13.48(Chemistry, Organic)

Journal Articles

Benchmark problems of start-up core physics of High Temperature engineering Test Reactor (HTTR)

Yamashita, Kiyonobu; Nojiri, Naoki; Fujimoto, Nozomu; Nakano, Masaaki*; Ando, Hiroei; Nagao, Yoshiharu; Nagaya, Yasunobu; Akino, Fujiyoshi; Takeuchi, Mitsuo; Fujisaki, Shingo; et al.

Proc. of IAEA TCM on High Temperature Gas Cooled Reactor Applications and Future Prospects, p.185 - 197, 1998/00

no abstracts in English

JAEA Reports

Study on analysis method for FBR cores (III)

Takeda, Toshikazu*; Unesaki, Hironobu*; Nakano, Makoto*; Arakawa, Yasushi*; Sakuma, Hiroomi*; Kurisaka, Kenichi*; Ito, Noboru*; Oe, Takashi*; Yamaguchi, Yoshiharu*

PNC TJ2605 87-001, 204 Pages, 1987/03

PNC-TJ2605-87-001.pdf:3.82MB

no abstracts in English

Oral presentation

Synthesis and their ion recognition properties of phenanthroline-aide type ligands for tri- and tetra-valent actinides

Kobayashi, Toru; Yaita, Tsuyoshi; Suzuki, Shinichi; Shiwaku, Hideaki; Okamoto, Yoshihiro; Akutsu, Kazuhiro; Nakano, Yoshiharu*; Fujii, Yuki*

no journal, , 

no abstracts in English

Oral presentation

Separation of lanthanide ion by aromatic nitrogen ligands and fluorescent property of the extracted complex

Shiwaku, Hideaki; Akutsu, Kazuhiro; Yaita, Tsuyoshi; Okamoto, Yoshihiro; Kobayashi, Toru; Numakura, Masahiko; Nakano, Yoshiharu*; Mahara, Saori*; Fujii, Yuki*

no journal, , 

no abstracts in English

Oral presentation

Extraction properties of lanthanides by various aromatic nitrogen ligands

Akutsu, Kazuhiro; Shiwaku, Hideaki; Okamoto, Yoshihiro; Suzuki, Shinichi; Ikeda, Atsushi; Kobayashi, Toru*; Numakura, Masahiko; Mahara, Saori*; Nakano, Yoshiharu*; Fujii, Yuki*; et al.

no journal, , 

no abstracts in English

Oral presentation

Measurement of neutron energy spectra from Fe target using FFAG proton accelerator

Nakano, Keita; Iwamoto, Hiroki; Meigo, Shinichiro; Nishio, Katsuhisa; Ishi, Yoshihiro*; Hirose, Kentaro; Iwamoto, Yosuke; Kuriyama, Yasutoshi*; Maekawa, Fujio; Makii, Hiroyuki; et al.

no journal, , 

For accurate prediction of neutronic characteristics for accelerator-driven system (ADS), an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University has been launched. As a part of this program, energy spectra of spallation neutron from 100-MeV proton-induced reactions on Fe, Pb, and Bi are plan to be measured. In this report, the results of the measurement on Fe target will be presented.

Oral presentation

Measurement of neutron energy spectra from Pb and Bi targets using FFAG proton accelerator

Nakano, Keita; Iwamoto, Hiroki; Meigo, Shinichiro; Nishio, Katsuhisa; Ishi, Yoshihiro*; Hirose, Kentaro; Iwamoto, Yosuke; Kuriyama, Yasutoshi*; Maekawa, Fujio; Makii, Hiroyuki; et al.

no journal, , 

Toward the realization of Accelerator-Driven System (ADS), we have been measuring the nuclear data for ADS using Kyoto University FFAG accelerator. In this presentation, we report the outline and the results of the energy spectrum measurement of neutrons produced by 107 MeV proton-induced reactions on lead and bismuth, which are the most important nuclides in ADS.

Oral presentation

Measurement and analysis of 107-MeV proton-induced neutron yields for iron, lead and bismuth

Iwamoto, Hiroki; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta; Nakano, Keita; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

no journal, , 

For the purpose of research and development of accelerator-driven nuclear transmutation systems, neutron yields of 107-MeV proton incident on iron, lead and bismuth targets were measured by the flight time method using the FFAG accelerator at Kyoto University. The energy spectra of the neutron yield obtained by the measurements were compared with results of particle transport analysis with the nuclear reaction models (INCL4.6/GEM, Bertini/GEM, JQMD/GEM and JQMD/SMM/GEM) incorporated in the Monte Carlo particle transport calculation code PHITS and the nuclear data library JENDL-4.0/HE. As a result, it was found that the INCL4.6/GEM, which was the reference model of PHITS, best reproduced the experimental values.

21 (Records 1-20 displayed on this page)