Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsumura, Takeshi*; Tsukakoshi, Mitsuru*; Ueda, Yoshihisa*; Higa, Nonoka*; Nakao, Akiko*; Kaneko, Koji; Kakihana, Masashi*; Hedo, Masato*; Nakama, Takao*; Onuki, Yoshichika*
Journal of the Physical Society of Japan, 91(7), p.073703_1 - 073703_5, 2022/07
Times Cited Count:1 Percentile:63.35(Physics, Multidisciplinary)Maruyama, Kenichi*; Tanaka, Seiya*; Kiyanagi, Ryoji; Nakao, Akiko*; Moriyama, Kentaro*; Ishikawa, Yoshihisa*; Amako, Yasushi*; Iiyama, Taku*; Futamura, Ryusuke*; Utsumi, Shigenori*; et al.
Journal of Alloys and Compounds, 892, p.162125_1 - 162125_8, 2022/02
Kaneko, Koji; Kawasaki, Takuro; Nakamura, Ai*; Munakata, Koji*; Nakao, Akiko*; Hanashima, Takayasu*; Kiyanagi, Ryoji; Ohara, Takashi; Hedo, Masato*; Nakama, Takao*; et al.
Journal of the Physical Society of Japan, 90(6), p.064704_1 - 064704_6, 2021/06
Times Cited Count:23 Percentile:95.74(Physics, Multidisciplinary)Kwon, H.*; Pietrasiak, E.*; Ohara, Takashi; Nakao, Akiko*; Chae, B.*; Hwang, C.-C.*; Jung, D.*; Hwang, I.-C.*; Ko, Y. H.*; Kim, K.*; et al.
Inorganic Chemistry, 60(9), p.6403 - 6409, 2021/05
Times Cited Count:0 Percentile:0.01(Chemistry, Inorganic & Nuclear)Yajima, Takeshi*; Hinuma, Yoyo*; Hori, Satoshi*; Iwasaki, Rui*; Kanno, Ryoji*; Ohara, Takashi; Nakao, Akiko*; Munakata, Koji*; Hiroi, Zenji*
Journal of Materials Chemistry A, 9(18), p.11278 - 11284, 2021/05
Times Cited Count:10 Percentile:79.18(Chemistry, Physical)Yamaguchi, Akiko; Asano, Ikumi*; Kitagawa, Yuri*; Meng, C.*; Nakao, Atsushi*; Okumura, Masahiko
Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.127 - 130, 2020/10
no abstracts in English
Utsumi, Shigenori*; Tanaka, Seiya*; Maruyama, Kenichi*; Amako, Yasushi*; Kiyanagi, Ryoji; Nakao, Akiko*; Moriyama, Kentaro*; Ishikawa, Yoshihisa*; 9 of others*
ACS Omega (Internet), 5(38), p.24890 - 24897, 2020/09
Fabricating large, high-crystalline-quality single-crystal samples of hexagonal ferrite Ba(FeSc
)
O
is the first important step to elucidating its helimagnetic structure and developing it for further applications. In this study, single crystals of Ba(Fe
Sc
)
O
of various Sc concentrations
were successfully grown by the spontaneous crystallization method using Na
O-Fe
O
flux. X-ray diffraction and elemental analysis revealed that the obtained crystals were composed of single-phase Ba(Fe
Sc
)
O
of high crystalline quality. The temperature dependence of magnetization and the magnetization curves at 77 K of the
= 0.128 crystal exhibited behavior characteristics of helimagnetism. Neutron diffraction measurements of the
= 0.128 crystal exhibited magnetic satellite reflection peaks below 211K, proving evidence that Ba(Fe
Sc
)
O
behaves as a helimagnetic material.
Iida, Kazuki*; Yoshida, Hiroyuki*; Nakao, Akiko*; Jeschke, H. O.*; Iqbal, Y.*; Nakajima, Kenji; Kawamura, Seiko; Munakata, Koji*; Inamura, Yasuhiro; Murai, Naoki; et al.
Physical Review B, 101(22), p.220408_1 - 220408_6, 2020/06
Times Cited Count:18 Percentile:85.16(Materials Science, Multidisciplinary)Crystal and magnetic structures of the mineral centennialite CaCu(OD)
Cl
0.6D
O are investigated by means of synchrotron X-ray diffraction and neutron diffraction measurements complemented by density functional theory (DFT) and pseudofermion functional renormalization group (PFFRG) calculations. In CaCu
(OD)
Cl
0.6D
O, Cu
ions form a geometrically perfect kagome network with antiferromagnetic
. No intersite disorder between Cu
and Ca
ions is detected. CaCu
(OD)
Cl
0.6D
O enters a magnetic long-range ordered state below
= 7.2 K, and the
=0 magnetic structure with negative vector spin chirality is obtained. The ordered moment at 0.3 K is suppressed to 0.58(2)
B. Our DFT calculations indicate the presence of antiferromagnetic
and ferromagnetic
superexchange couplings of a strength which places the system at the crossroads of three magnetic orders (at the classical level) and a spin-
PFFRG analysis shows a dominance of
=0 type magnetic correlations, consistent with and indicating proximity to the observed
=0 spin structure. The results suggest that this material is located close to a quantum critical point and is a good realization of a
-
-
kagome antiferromagnet.
Hirschberger, M.*; Nakajima, Taro*; Kriener, M.*; Kurumaji, Takashi*; Spitz, L.*; Gao, S.*; Kikkawa, Akiko*; Yamasaki, Yuichi*; Sagayama, Hajime*; Nakao, Hironori*; et al.
Physical Review B, 101(22), p.220401_1 - 220401_6, 2020/06
Times Cited Count:28 Percentile:92.13(Materials Science, Multidisciplinary)Abe, Nobuyuki*; Shiozawa, Shunsuke*; Matsuura, Keisuke*; Sagayama, Hajime*; Nakao, Akiko*; Ohara, Takashi; Tokunaga, Yusuke*; Arima, Takahisa*
Physical Review B, 101(18), p.180407_1 - 180407_5, 2020/05
Times Cited Count:2 Percentile:18.66(Materials Science, Multidisciplinary)Nakazato, Seiya*; Iwasa, Kazuaki*; Hashimoto, Daisuke*; Shiozawa, Mami*; Kuwahara, Keitaro*; Nakao, Hironori*; Sagayama, Hajime*; Ishikado, Motoyuki*; Ohara, Takashi; Nakao, Akiko*; et al.
JPS Conference Proceedings (Internet), 30, p.011128_1 - 011128_6, 2020/03
Ikeda, Shugo*; Kaneko, Koji; Tanaka, Yuki*; Kawasaki, Takuro; Hanashima, Takayasu*; Munakata, Koji*; Nakao, Akiko*; Kiyanagi, Ryoji; Ohara, Takashi; Mochizuki, Kensei*; et al.
Journal of the Physical Society of Japan, 89(1), p.014707_1 - 014707_7, 2020/01
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Nakane, Tomohiro*; Yoneyama, Shota*; Kodama, Takeshi*; Kikuchi, Koichi*; Nakao, Akiko*; Ohara, Takashi; Higashinaka, Ryuji*; Matsuda, Tatsuma*; Aoki, Yuji*; Fujita, Wataru*
Dalton Transactions (Internet), 48(1), p.333 - 338, 2019/01
Times Cited Count:2 Percentile:14.83(Chemistry, Inorganic & Nuclear)Kaneko, Koji; Frontzek, M. D.*; Matsuda, Masaaki*; Nakao, Akiko*; Munakata, Koji*; Ohara, Takashi; Kakihana, Masashi*; Haga, Yoshinori; Hedo, Masato*; Nakama, Takao*; et al.
Journal of the Physical Society of Japan, 88, p.013702_1 - 013702_5, 2019/01
Times Cited Count:50 Percentile:95.2(Physics, Multidisciplinary)Iwasa, Kazuaki*; Iga, Fumitoshi*; Moyoshi, Taketo*; Nakao, Akiko*; Ohara, Takashi
Journal of the Physical Society of Japan, 87(6), p.064705_1 - 064705_5, 2018/06
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Tsuchiya, Tomoki*; Kobayashi, Ryota*; Kubota, Takahide*; Saito, Kotaro*; Ono, Kanta*; Ohara, Takashi; Nakao, Akiko*; Takanashi, Koki*
Journal of Physics D; Applied Physics, 51(6), p.065001_1 - 065001_7, 2018/02
Times Cited Count:6 Percentile:35.17(Physics, Applied)Shamoto, Shinichi; Ito, Takashi; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato*; Akatsu, Mitsuhiro*; Kodama, Katsuaki; Nakao, Akiko*; Moyoshi, Taketo*; et al.
Physical Review B, 97(5), p.054429_1 - 054429_9, 2018/02
Times Cited Count:15 Percentile:63.41(Materials Science, Multidisciplinary)Nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet YFe
O
have been studied by neutron scattering. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of
-integrated dynamical spin susceptibility
"(
) exhibits a square-root energy-dependence in the low energies. The magnon density of state is estimated from the
"(
) obtained on an absolute scale. The value is consistent with a single chirality mode for the magnon branch expected theoretically.
Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.
Igarashi, Masayasu*; Matsumoto, Tomohiro*; Yagihashi, Fujio*; Yamashita, Hiroshi*; Ohara, Takashi; Hanashima, Takayasu*; Nakao, Akiko*; Moyoshi, Taketo*; Sato, Kazuhiko*; Shimada, Shigeru*
Nature Communications (Internet), 8, p.140_1 - 140_8, 2017/07
Times Cited Count:21 Percentile:63.15(Multidisciplinary Sciences)Kawasaki, Takuro; Kaneko, Koji; Nakamura, Ai*; Aso, Naofumi*; Hedo, Masato*; Nakama, Takao*; Ohara, Takashi; Kiyanagi, Ryoji; Oikawa, Kenichi; Tamura, Itaru; et al.
Journal of the Physical Society of Japan, 85(11), p.114711_1 - 114711_5, 2016/11
Times Cited Count:8 Percentile:55.05(Physics, Multidisciplinary)