Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sakai, Kenji; Oi, Motoki; Haga, Katsuhiro; Kai, Tetsuya; Nakatani, Takeshi; Kobayashi, Yasuo*; Watanabe, Akihiko*
JPS Conference Proceedings (Internet), 33, p.011151_1 - 011151_6, 2021/03
For safely and efficiently operating a spallation neutron source and a muon target, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF), GCS administers operation processes and interlocks of many instruments for various operation statuses. It consists of several subsystems such as an integral control system (ICS), interlock systems (ILS), shared servers, network system, and timing distribution system (TDS). Although GCS is an independent system that controls the target stations, it works closely with the control systems of other facilities in J-PARC. Since the first beam injection in 2008, GCS has operated stably without any serious troubles after modification based on commissioning for operation and control. Then, significant improvements in GCS such as upgrade of ICS by changing its framework software and function enhancement of ILS were proceeded until 2015, in considering sustainable long-term operation and maintenance. In recent years, many instruments in GCS have replaced due to end of production and support of them. In this way, many modifications have been proceeded in the entire GCS after start of beam operation. Under these situation, it is important to comprehend upgrade history and present status of GCS in order to decide its upgrade plan for the coming ten years. This report will mention upgrade history, present status and future agenda of GCS.
Tsuchikawa, Yusuke; Kai, Tetsuya; Abe, Yuta; Oishi, Yuji*; Sun, Y.*; Oikawa, Kenichi; Nakatani, Takeshi; Sato, Ikken
Nuclear Instruments and Methods in Physics Research A, 991, p.164964_1 - 164964_5, 2021/03
Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)Peak shape analysis was performed for the energy spectra of Doppler-broadened prompt -rays generated by neutron capture reactions with various boride or boron samples. Significant differences were observed between nonmetallic and metallic borides. Minor differences between the peak shapes of prompt
-rays from zirconium- and ferro-borons were evaluated by a peak fitting method. The identification of zirconium- and ferro-borons and other types of borides was estimated.
Shinohara, Takenao; Kai, Tetsuya; Oikawa, Kenichi; Nakatani, Takeshi; Segawa, Mariko; Hiroi, Kosuke; Su, Y. H.; Oi, Motoki; Harada, Masahide; Iikura, Hiroshi; et al.
Review of Scientific Instruments, 91(4), p.043302_1 - 043302_20, 2020/04
Times Cited Count:32 Percentile:95.58(Instruments & Instrumentation)Sakai, Kenji; Oi, Motoki; Takada, Hiroshi; Kai, Tetsuya; Nakatani, Takeshi; Kobayashi, Yasuo*; Watanabe, Akihiko*
JAEA-Technology 2018-011, 57 Pages, 2019/01
For safely and efficiently operating a spallation neutron source and a muon target, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF). GCS administers operation processes and interlocks of many instruments. It consists of several subsystems such as an integral control system (ICS), interlock systems (ILS), shared servers, network system, and timing distribution system (TDS). Although GCS is an independent system that controls the target stations, it works closely with the control systems of the accelerators and other facilities in J-PARC. Since the first beam injection, GCS has operated stably without any serious troubles after modification based on commissioning for operation and control. Then, significant improvements in GCS such as upgrade of ICS by changing its framework software and function enhancement of ILS were proceeded until 2015. In this way, many modifications have been proceeded in the entire GCS during a period of approximately ten years after start of beam operation. Under these situation, it is important to comprehend upgrade history and present status of GCS in order to decide its upgrade plan. This report summarizes outline, structure, roles and functions of GCS in 2017.
Segawa, Mariko; Oikawa, Kenichi; Kai, Tetsuya; Shinohara, Takenao; Hayashida, Hirotoshi*; Matsumoto, Yoshihiro*; Parker, J. D.*; Nakatani, Takeshi; Hiroi, Kosuke; Su, Y.; et al.
JPS Conference Proceedings (Internet), 22, p.011028_1 - 011028_8, 2018/11
Kawasaki, Takuro; Inamura, Yasuhiro; Ito, Takayoshi*; Nakatani, Takeshi; Harjo, S.; Gong, W.*; Aizawa, Kazuya
Journal of Applied Crystallography, 51(3), p.630 - 634, 2018/06
Times Cited Count:3 Percentile:33.49(Chemistry, Multidisciplinary)Kajimoto, Ryoichi; Nakamura, Mitsutaka; Inamura, Yasuhiro; Kamazawa, Kazuya*; Ikeuchi, Kazuhiko*; Iida, Kazuki*; Ishikado, Motoyuki*; Murai, Naoki; Kira, Hiroshi*; Nakatani, Takeshi; et al.
Journal of Physics; Conference Series, 1021(1), p.012030_1 - 012030_6, 2018/06
Times Cited Count:3 Percentile:91.34Sakasai, Kaoru; Sato, Setsuo*; Seya, Tomohiro*; Nakamura, Tatsuya; To, Kentaro; Yamagishi, Hideshi*; Soyama, Kazuhiko; Yamazaki, Dai; Maruyama, Ryuji; Oku, Takayuki; et al.
Quantum Beam Science (Internet), 1(2), p.10_1 - 10_35, 2017/09
Neutron devices such as neutron detectors, optical devices including supermirror devices and He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC), Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.
Kai, Tetsuya; Hiroi, Kosuke; Su, Y.; Shinohara, Takenao; Parker, J. D.*; Matsumoto, Yoshihiro*; Hayashida, Hirotoshi*; Segawa, Mariko; Nakatani, Takeshi; Oikawa, Kenichi; et al.
Physics Procedia, 88, p.306 - 313, 2017/06
Times Cited Count:3 Percentile:81.64Inamura, Yasuhiro; Ito, Takayoshi*; Suzuki, Jiro*; Nakatani, Takeshi
JAEA-Testing 2016-001, 91 Pages, 2016/06
Manyo Library is a software framework for developing analysis software of neutron scattering data produced at MLF, J-PARC. This software framework is required to work on many instruments in MLF and to include base functions applied to various scientific purposes at beam lines. This framework mainly consists of data containers, which enable to store 1, 2 and 3 dimensional axes data for neutron scattering. Data containers have many functions to calculate four arithmetic operations with errors distribution between containers, to store the meta-data about measurements and to read or write text file. Since Manyo Library is built in C++ language, we' ve introduced the technology to call C++ function from Python environment into the framework. As results, we have already developed a lot of software for data reduction, analysis and visualization, which are utilized widely in beam lines at MLF. This document is the manual for the beginner to touch this framework.
Nakatani, Takeshi; Inamura, Yasuhiro
Hamon, 26(1), p.42 - 45, 2016/02
In the Materials and Life science experimental Facility (MLF) of J-PARC, the computing environment group was organized from the construction of MLF. The group has been developed and operated the neutron event-recording data acquisition (DAQ) system, the data analysis library and the device control software framework for neutron experimental instruments in MLF. In this article, we report the new developments as follows: The universal event-recording DAQ system to make the most of the intense neutrons; the data process framework to enable multi-dimensional data analysis at various neutron instruments; the remote access to be easily able to monitor a measurement status and handle many kinds of enormous data from anytime, anywhere.
Kajimoto, Ryoichi; Nakamura, Mitsutaka; Inamura, Yasuhiro; Kamazawa, Kazuya*; Ikeuchi, Kazuhiko*; Iida, Kazuki*; Ishikado, Motoyuki*; Nakajima, Kenji; Kawamura, Seiko; Nakatani, Takeshi; et al.
JAEA-Conf 2015-002, p.319 - 329, 2016/02
Hattori, Takanori; Sano, Asami; Arima, Hiroshi*; Komatsu, Kazuki*; Yamada, Akihiro*; Inamura, Yasuhiro; Nakatani, Takeshi; Seto, Yusuke*; Nagai, Takaya*; Utsumi, Wataru; et al.
Nuclear Instruments and Methods in Physics Research A, 780, p.55 - 67, 2015/04
Times Cited Count:68 Percentile:99.15(Instruments & Instrumentation)PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (
/
0.6%) and the accessible
-spacing range (0.2-8.4
) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.
Sakai, Kenji; Kai, Tetsuya; Oi, Motoki; Watanabe, Akihiko; Nakatani, Takeshi; Higemoto, Wataru; Meigo, Shinichiro; Sakamoto, Shinichi; Takada, Hiroshi; Futakawa, Masatoshi
Progress in Nuclear Science and Technology (Internet), 4, p.264 - 267, 2014/04
no abstracts in English
Shamoto, Shinichi; Kodama, Katsuaki; Imaki, Tadashi*; Nakatani, Takeshi; Oshita, Hidetoshi*; Kaneko, Naokatsu*; Masuko, Kenji*; Sakamoto, Kensaku; Yamaguchi, Kenji; Suzuya, Kentaro; et al.
JPS Conference Proceedings (Internet), 1, p.014011_1 - 014011_5, 2014/03
2D neutron diffraction imaging of an ammonite fossil was carried out at high-intensity total diffractometer NOVA in J-PARC. Observed diffraction profiles consist of calcite, siderite and amorphous structures.
Takeda, Masayasu; Yamazaki, Dai; Soyama, Kazuhiko; Maruyama, Ryuji; Hayashida, Hirotoshi; Asaoka, Hidehito; Yamazaki, Tatsuya; Kubota, Masato; Aizawa, Kazuya; Arai, Masatoshi; et al.
Chinese Journal of Physics, 50(2), p.161 - 170, 2012/04
Takahashi, Nobuaki; Shibata, Kaoru; Kawakita, Yukinobu; Nakajima, Kenji; Inamura, Yasuhiro; Nakatani, Takeshi; Nakagawa, Hiroshi; Fujiwara, Satoru; Sato, Taku*; Tsukushi, Itaru*; et al.
Journal of the Physical Society of Japan, 80(Suppl.B), p.SB007_1 - SB007_4, 2011/12
Times Cited Count:6 Percentile:44.46(Physics, Multidisciplinary)Nakajima, Kenji; Kawamura, Seiko; Kikuchi, Tatsuya; Nakamura, Mitsutaka; Kajimoto, Ryoichi; Inamura, Yasuhiro; Takahashi, Nobuaki; Aizawa, Kazuya; Suzuya, Kentaro; Shibata, Kaoru; et al.
Journal of the Physical Society of Japan, 80(Suppl.B), p.SB028_1 - SB028_6, 2011/05
Times Cited Count:108 Percentile:95.06(Physics, Multidisciplinary)AMATERAS is a cold-neutron disk-chopper spectrometer in MLF, J-PARC. The construction of main part of the spectrometer has been completed in spring of 2009. Soon after that, we have started the commissioning work on AMATERAS. The performance of AMATERAS has been examined by test experiments in the course of commissioning. In parallel to these works, we have started the user program on AMATERAS from December 2009 and we are getting scientific results from our spectrometer. In this presentation, we will report the current status of AMATERAS including the results of performance tests and some of examples of scientific outputs.
Inamura, Yasuhiro; So, J.-Y.*; Nakajima, Kenji; Suzuki, Jiro*; Nakatani, Takeshi; Kajimoto, Ryoichi; Otomo, Toshiya*; Moon, M.-K.*; Lee, C.-H.*; Yasu, Yoshiji*; et al.
JAEA-Technology 2010-047, 74 Pages, 2011/02
This report summarizes the two-year (2007-2009) activities of Korea-Japan collaboration of chopper software development. Here we have described the background of the collaboration and the main part of our work. We also discussed briefly a future plan of our collaboration starting in 2010. Some of detailed description on the management of the collaboration as well as related information is given in appendix.
Kajimoto, Ryoichi; Nakamura, Mitsutaka; Inamura, Yasuhiro; Mizuno, Fumio; Nakajima, Kenji; Kawamura, Seiko; Yokoo, Tetsuya*; Nakatani, Takeshi; Maruyama, Ryuji; Soyama, Kazuhiko; et al.
Journal of the Physical Society of Japan, 80(Suppl.B), p.SB025_1 - SB025_6, 2011/01
Times Cited Count:89 Percentile:93.44(Physics, Multidisciplinary)