Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hwang, J.*; Chillery, T.*; Dozono, Masanori*; Imai, Nobuaki*; Michimasa, Shinichiro*; Sumikama, Toshiyuki*; Chiga, Nobuyuki*; Ota, Shinsuke*; Nakayama, Shinsuke; 49 of others*
Progress of Theoretical and Experimental Physics (Internet), 16 Pages, 2024/00
Nuclear transmutation emerges as a promising approach for reprocessing high-level waste, specifically treating long-lived nuclides like Zr from spent fuel. It is essential to accumulate reaction data for these nuclei to advance this prominent treatment and to build a comprehensive understanding of reaction mechanisms. In this study, the residual production cross sections resulting from proton-induced reactions on Zr were measured at 27 MeV/nucleon in inverse kinematics. At the RIKEN-RIBF facility the OEDO beamline was used to deduce production cross sections for isotopes, Nb, Zr, and Y. Comparing the results from this study and prior research with calculated excitation functions, a moderate agreement is found with theoretical predictions derived from TALYS and CCONE. Despite the potential limitations of low-energy proton-induced reactions for Zr transmutation, the measured cross sections offer valuable insights for future considerations in nuclear-waste treatment facilities. This is particularly relevant for facilities exploring innovative methods, such as accelerator-driven systems.
Chillery, T.*; Hwang, J.*; Dozono, Masanori*; Imai, Nobuaki*; Michimasa, Shinichiro*; Sumikama, Toshiyuki*; Chiga, Nobuyuki*; Ota, Shinsuke*; Nakayama, Shinsuke; 49 of others*
Progress of Theoretical and Experimental Physics (Internet), 2023(12), p.121D01_1 - 121D01_11, 2023/12
Times Cited Count:0 Percentile:0.01(Physics, Multidisciplinary)The deuteron is a loosely bound system which can easily break up into its constituent proton and neutron whilst in the presence of Coulomb and nuclear fields. Previous experimental studies have shown that this breakup process has a significant impact on residual nucleus production from deuteron bombardment in the high energy range of 50 - 210 MeV/nucleon. However, there remains a lack of cross-section data at energies below 50 MeV/nucleon. The current study determined Zr + d reaction cross sections under inverse kinematics at approximately 28 MeV/nucleon using the BigRIPS separator, OEDO beamline, and SHARAQ spectrometer. Cross sections from this research were compared with previous measurements and theoretical calculations. The experimental results show a large enhancement of the production cross sections of residual nuclei, especially those produced from a small number of particle emissions, compared to the proton-induced reaction data at similar bombarding energy. The DEURACS calculation, which quantitatively takes deuteron-breakup effects into account, reproduces the data well. As a long-lived fission product, Zr remains a challenge for nuclear waste disposal and treatment. This study's low-energy data may assist future consideration of nuclear-waste treatment facilities, where Zr + d may feasibly transmute the waste into short-lived/stable nuclei.
Kuroda, Kenta*; Arai, Yosuke*; Rezaei, N.*; Kunisada, So*; Sakuragi, Shunsuke*; Alaei, M.*; Kinoshita, Yuto*; Bareille, C.*; Noguchi, Ryo*; Nakayama, Mitsuhiro*; et al.
Nature Communications (Internet), 11, p.2888_1 - 2888_9, 2020/06
Times Cited Count:21 Percentile:75.52(Multidisciplinary Sciences)Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.
Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07
Times Cited Count:8 Percentile:55.27(Physics, Multidisciplinary)Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.
Ito, Masayasu; Ogawa, Miho; Inoue, Toshihiko; Yoshimochi, Hiroshi; Koyama, Shinichi; Koyama, Tomozo; Nakayama, Shinichi
Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 7 Pages, 2017/00
Laboratory-2 of the Okuma Analysis and Research Center will be used for the technological development of techniques to treat and dispose fuel debris, etc. The specific analytical content and its importance has been discussed by an experts committee in FY 2016. The committee regarded fuel debris retrieval and criticality control related topics as the most important content. As a result, it will be a priority to introduce equipment to perform examination such as shape and size measurement, compositional and nuclide analysis, hardness and toughness test, and radiation dose rate measurement. In addition, since sample will have high dose rates (1 Sv/h or more) at the time of reception, hot cells with enough radiation shielding ability will be used. In the hot cell, the pre-processing will be performed, such as cutting and dissolution of samples. Processed samples will be examined in concrete cells, steel cells, glove boxes and fume hoods. Detail design of Laboratory-2 started on FY 2017.
Daido, Hiroyuki; Kawatsuma, Shinji; Kojima, Hisayuki; Ishihara, Masahiro; Nakayama, Shinichi
Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 8 Pages, 2017/00
Sugaya, Yuki; Sakazume, Yoshinori; Akutsu, Hideyuki; Inoue, Toshihiko; Yoshimochi, Hiroshi; Sato, Soichi; Koyama, Tomozo; Nakayama, Shinichi
Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 8 Pages, 2017/00
The Japan Atomic Energy Agency has been developing the research and development facilities, "Okuma Analysis and Research Center", in order to ascertain the properties of radioactive wastes and fuel debris towards the decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station. This paper outlines the concept of "Laboratory-1" which will analyze low and medium level samples in the Okuma Analysis and Research Center with a focus on the research plan.
Inoue, Toshihiko; Ogawa, Miho; Sakazume, Yoshinori; Yoshimochi, Hiroshi; Sato, Soichi; Koyama, Shinichi; Koyama, Tomozo; Nakayama, Shinichi
Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 7 Pages, 2017/00
Decommissioning of TEPCO's 1F is in progress according to the Roadmap. The Roadmap assigned the construction of a hot laboratory and analysis to the JAEA. The hot laboratory, Okuma Analysis and Research Center consists of the three buildings; Administrative building, the Laboratory-1 and Laboratory-2. The Laboratory-1 and Laboratory-2 are hot laboratories. Laboratory-1 is for radiometric analysis of low and medium level radioactive rubble and secondary wastes. The license of the Laboratory-1's implementation was approved by The Secretariat of the Nuclear Regulation Authority and the construction started in April 2017 and plans an operational start in 2020. Laboratory-2 provides concrete cells, steel cells for the analysis of the fuel debris and high level radioactive rubble. The Laboratory-2's major analysis items is reviewed by review meeting organized of cognoscente.
Nakayama, Shinichi; Okumura, Masahiko*; Nagasaki, Shinya*; Enokida, Yoichi*; Umeki, Hiroyuki*; Takase, Hiroyasu*; Kawasaki, Daisuke*; Hasegawa, Shuichi*; Furuta, Kazuo*
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 23(2), p.131 - 148, 2016/12
A symposium "Science of nuclear fuel cycle and backend - Research and education -" was held at the Univer-sity of Tokyo in June 25, 2016. This aimed at developing the research on nuclear fuel cycle and backend. The time and the number of participants of the symposium were limited, but the active discussion was conducted, and the common perception for the future was shared among the experienced participants in those fields. This paper provides the discussions made in the symposium, and also, as a memory to Professor Ahn, the University of California, Berkeley, his prominent achievements in academic research and education.
Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika*; Yamada, Tsutomu*; et al.
JAEA-Research 2016-016, 131 Pages, 2016/10
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report.
Saegusa, Jun; Tagawa, Akihiro; Kurikami, Hiroshi; Iijima, Kazuki; Yoshikawa, Hideki; Tokizawa, Takayuki; Nakayama, Shinichi; Ishida, Junichiro
Mechanical Engineering Journal (Internet), 3(3), p.15-00609_1 - 15-00609_7, 2016/06
After the Fukushima nuclear accident, JAEA lead off demonstration tests to find out effective decontamination methods for various school facilities in Fukushima. It included (1) dose reduction measures at schoolyards, (2) purification of swimming pool water and (3) removal of surface contamination of playground equipments. Through these tests, they established practical methods suitable for each situation; (1) At school yards, dose rates were drastically reduced by removing topsoil which was then placed in trenches of 1 m deep; (2) For the purification of pool water, the flocculation-coagulation treatment was found to be effective for collecting radiocesium dissolved in the water; (3) Demonstration tests for playground equipments, such as horizontal bars and a sandbox wood frame, suggested that effectiveness of decontamination considerably varied depending on the material, paint or coating condition. This paper reviews these demonstrations.
Sanada, Yukihisa; Mori, Airi; Ishizaki, Azusa; Munakata, Masahiro; Nakayama, Shinichi; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika; Yamada, Tsutomu; Ishida, Mutsushi; et al.
JAEA-Research 2015-006, 81 Pages, 2015/07
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (NPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2014 were summarized in the report.
Saegusa, Jun; Tagawa, Akihiro; Kurikami, Hiroshi; Iijima, Kazuki; Yoshikawa, Hideki; Tokizawa, Takayuki; Nakayama, Shinichi; Ishida, Junichiro
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05
After the Fukushima nuclear accident, JAEA lead off demonstration tests to find out effective decontamination methods for various school facilities in Fukushima. It included (1) dose reduction measures at schoolyards, (2) purification of swimming pool water and (3) removal of surface contamination of playground equipments. Through these tests, they established practical methods suitable for each situation; (1) At school yards, dose rates were drastically reduced by removing topsoil which was then placed in trenches of 1 m deep; (2) For the purification of pool water, the flocculation-coagulation treatment was found to be effective for collecting radiocesium dissolved in the water; (3) Demonstration tests for playground equipments, such as horizontal bars and a sandbox wood frame, suggested that effectiveness of decontamination considerably varied depending on the material, paint or coating condition. This paper reviews these demonstrations.
Kitamura, Akihiro; Machida, Masahiko; Sato, Haruo; Nakayama, Shinichi; Yui, Mikazu
Transactions of the American Nuclear Society, 109(1), p.156 - 157, 2013/11
Computational modeling and simulating team of Fukushima Environmental Safety Center, Japan Atomic Energy Agency has been started to develop a number of mathematical models of radioactive contaminants on the land and rivers, lakes, and estuaries in Fukushima, as well as the basic studies of adsorption/absorption mechanism of Cs and soils. These predictions will be utilized for the dose assessment from the environmental contamination and the proposal of countermeasures to dispersion of contaminant. In this presentation we describe the outline of our current activities.
Yoshikawa, Hideki; Iijima, Kazuki; Sasamoto, Hiroshi; Fujiwara, Kenso; Mitsui, Seiichiro; Kitamura, Akira; Kurikami, Hiroshi; Tokizawa, Takayuki; Yui, Mikazu; Nakayama, Shinichi
Materials Research Society Symposium Proceedings, Vol.1518, p.269 - 275, 2013/10
Following the release of radionuclides into the environment as a result of the accident at Fukushima Daiichi Nuclear Power Plant, Japan Atomic Energy Agency (JAEA) had to develop an immediate and effective method of reducing the dose rate received by students in school facilities. A demonstration of a reducing method was carried out by JAEA at a junior high school ground and kindergarten yard in the center of Fukushima-city. Dose rates of the released radionuclides are largely controlled by the ground level contamination and accumulation of mainly cesium-137 (Cs) and cesium-134 (Cs) in populated areas. An effective means of reducing dose rate was to remove the surface soil and to bury it on-site under fresh uncontaminated soil or soil collected under deep depth at the site for shielding. The dose rate at1 m above ground level was reduced from 2.5 Sv/h to 0.15 Sv/h.
Miyahara, Kaname; Tokizawa, Takayuki; Nakayama, Shinichi
Materials Research Society Symposium Proceedings, Vol.1518, p.245 - 256, 2013/10
After the Fukushima Dai-ichi accident, Japan Atomic Energy Agency (JAEA) was chosen by the Government to conduct decontamination model projects at selected sites. Despite tight boundary conditions in terms of timescale and resources, the decontamination model projects provide a good basis for developing recommendations on how to assure clean-up efficiency and reduce time, cost, subsequent waste management and environmental impact. This can be summarised in terms of site characterisation and data interpretation, clean-up and waste minimisation and storage.
Iijima, Kazuki; Funaki, Hironori; Tokizawa, Takayuki; Nakayama, Shinichi
Proceedings of 15th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM 2013) (CD-ROM), 6 Pages, 2013/09
In decontamination pilot projects conducted by Japan Atomic Energy Agency (JAEA), many different techniques were tested to determine their applicability to remediate areas evacuated after the Fukushima Daiichi nuclear accident. The projects evaluated the radioactive contamination of trees and the effectiveness of decontaminating a highly contaminated evergreen forest. As the first step, three Japanese cedar trees and three fir trees were cut down and the distributions of radioactive cesium (Cs) were measured in each. The total concentrations of Cs and Cs in the leaves and branches were about 1 MBq/kg for both cedar and fir trees, and were appreciably higher than in the bark for cedar. The concentrations in the outer part of the trunks (under the bark) were lower, on the order of 10 kBq/kg, and those in the core of the trunks were lower than 1 kBq/kg for both kinds of trees. The observation that the Cs concentrations are higher in the outer part of trees, is compatible with the assumption that radio-Cs was mostly adsorbed on the surface of trees and partly penetrated into the trunks through the bark. Evolution of air dose rates in a 10060 m pasture adjacent to the forest was monitored during decontamination of the forest and of the pasture itself. The dose rates in the pasture decreased drastically after stripping contaminated topsoil from the pasture and decreased slightly more after stripping contaminated topsoil of the forest floor and pruning the trees. Cutting down and removing 84 trees in the outermost area (10-m width) of the forest also slightly decreased these dose rates. After decontamination, the residual dose rates around the highly contaminated forest were mostly attributed to radioactive Cs existing in or on trees and topsoil in the untouched forest beyond the decontaminated area.
Saegusa, Jun; Kurikami, Hiroshi; Yasuda, Ryo; Kurihara, Kazuo; Arai, Shigeki; Kuroki, Ryota; Matsuhashi, Shimpei; Ozawa, Takashi; Goto, Hiroaki; Takano, Takao; et al.
Health Physics, 104(3), p.243 - 250, 2013/03
Times Cited Count:3 Percentile:25.48(Environmental Sciences)After the Nuclear accident on March 2011, water discharge from many outdoor swimming pools in the Fukushima prefecture was suspended out of concern that radiocesium in the pool water would flow into farmlands. We have reviewed the existing flocculation method for decontaminating pool water and established a practical decontamination method by demonstrating the process at several pools in the Fukushima prefecture.
Tagawa, Akihiro; Nakayama, Shinichi; Miyahara, Kaname
Proceedings of International Nuclear Fuel Cycle Conference; Nuclear Energy at a Crossroads (GLOBAL 2013) (CD-ROM), p.944 - 951, 2013/03
A wide area of Fukushima Prefecture was contaminated with radioactivity released by the Fukushima Daiichi nuclear accident. Japan Atomic Energy Agency (JAEA) has been involved in mitigating the effects of the accident in a diversifying ways from the emergency dispatch of radiation experts immediately after the accident and radiation monitoring in the affected areas to demonstrate of decontamination for a variety of targets, public affairs with evacuated populations, and research and development activities for environmental remediation. The decontamination related activity is one of the major contributions of JAEA to environmental remediation, providing technical supports to the unprecedented regional decontamination in Fukushima that have been carried out by the central and local governments of Japan. JAEA's experiences and expertise obtained are overviewed in this paper focusing on the decontamination pilot project.
Kurikami, Hiroshi; Yoshikawa, Hideki; Sasamoto, Hiroshi; Iijima, Kazuki; Zaima, Naoki; Munakata, Masahiro; Tokizawa, Takayuki; Nakayama, Shinichi
JAEA-Review 2012-045, 129 Pages, 2013/01
This report shows the records of JAEA's investigation on dose rate reduction at the Fukushima University Junior High School and Kindergarten. The main outcomes are as follows. (1) experiments were performed to investigate intrusion depth of radiocesium in the soil. Based on the experiment, we proposed a countermeasure to reduce air dose rates. (2) The action we proposed allowed dose rate reduction to about one tenth to one twentieth at playgrounds. (3) Follow-up monitoring was performed after one year, and shows no obvious evidence of recontamination at the playgrounds. (4) Decontamination of a tree was tested. Radiocesium was accumulated around the root. By removing the soil, the air dose rate at about one-meter distance from the tree was decreased.