Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Pyroelectric power generation from the waste heat of automotive exhaust gas

Kim, J.*; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Sakamoto, Tomokazu*; Kawasaki, Takuro; Fukuda, Tatsuo; Sekino, Toru*; Nakayama, Tadachika*; Takeda, Masatoshi*; et al.

Sustainable Energy & Fuels (Internet), 4(3), p.1143 - 1149, 2020/03

 Times Cited Count:2 Percentile:32.54(Chemistry, Physical)

Journal Articles

Electrical and crystallographic study of an electrothermodynamic cycle for a waste heat recovery

Kim, J.*; Yamanaka, Satoru*; Nakajima, Akira*; Kato, Takanori*; Kim, Y.*; Fukuda, Tatsuo; Yoshii, Kenji; Nishihata, Yasuo; Baba, Masaaki*; Takeda, Masatoshi*; et al.

Advanced Sustainable Systems (Internet), 2(11), p.1800067_1 - 1800067_8, 2018/11

 Times Cited Count:1 Percentile:82.92(Green & Sustainable Science & Technology)

Journal Articles

Temperature stability of PIN-PMN-PT ternary ceramics during pyroelectric power generation

Moro, Takuya*; Kim, J.*; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Nakayama, Tadachika*; Takeda, Masatoshi*; Yamada, Noboru*; Nishihata, Yasuo; Fukuda, Tatsuo; et al.

Journal of Alloys and Compounds, 768, p.22 - 27, 2018/11

 Times Cited Count:7 Percentile:35.32(Chemistry, Physical)

Journal Articles

Pyroelectric power generation with ferroelectrics (1-x)PMN-xPT

Kim, J.*; Yamanaka, Satoru*; Nakajima, Akira*; Kato, Takanori*; Kim, Y.*; Fukuda, Tatsuo; Yoshii, Kenji; Nishihata, Yasuo; Baba, Masaaki*; Takeda, Masatoshi*; et al.

Ferroelectrics, 512(1), p.92 - 99, 2017/08

 Times Cited Count:6 Percentile:50.14(Materials Science, Multidisciplinary)

Journal Articles

Relationship between the material properties and pyroelectric-generating performance of PZTs

Yamanaka, Satoru*; Kim, J.*; Nakajima, Akira*; Kato, Takanori*; Kim, Y.*; Fukuda, Tatsuo; Yoshii, Kenji; Nishihata, Yasuo; Baba, Masaaki*; Yamada, Noboru*; et al.

Advanced Sustainable Systems (Internet), 1(3-4), p.1600020_1 - 1600020_6, 2017/04

no abstracts in English

Journal Articles

Novel electrothermodynamic power generation

Kim, Y.*; Kim, J.*; Yamanaka, Satoru*; Nakajima, Akira*; Ogawa, Takashi*; Serizawa, Takeshi*; Tanaka, Hirohisa*; Baba, Masaaki*; Fukuda, Tatsuo; Yoshii, Kenji; et al.

Advanced Energy Materials, 5(13), p.1401942_1 - 1401942_6, 2015/07

An innovative electro-thermodynamic cycle based on temporal temperature variations using pyroelectric effect has been presented. Practical energy is successfully generated in both $textit{in-situ}$ synchrotron X-ray diffraction measurements under controlled conditions and $textit{Operando}$ real engine dynamometer experiments. The main generating origin is revealed as a combination of a crystal structure change and dipole change phenomenon corresponds to the temperature variation. In particular, the electric field induced 180$$^circ$$ domain switching extremely improves generating power, and the true energy breakeven with temperature variation is firstly achieved.

Oral presentation

Spark plasma sintering of MoO$$_{3}$$ for production of $$^{99m}$$Tc by neutron irradiation

Suematsu, Hisayuki*; Sato, Soma*; Nanko, Makoto*; Tsuchiya, Kunihiko; Nishikata, Kaori; Suzuki, Tsuneo*; Nakayama, Tadachika*; Niihara, Koichi*

no journal, , 

Spark plasma sintering of MoO$$_{3}$$ was carried out for production of $$^{99m}$$Tc from $$^{98}$$Mo by the (n,$$gamma$$) method in a nuclear reactor. Powder of MoO$$_{3}$$ with an average grain size of 0.8$$mu$$m and a purity of 99.99% was pressed in a graphite die with a diameter of 20 mm. Then, the green compact was heated in a spark plasma sintering apparatus with heating rates of 100 $$sim$$ 200$$^{circ}$$C/min to 500 $$sim$$ 600$$^{circ}$$C in vacuum. After holding the temperature for 5 min, the sample was quenched. The sintered samples were characterized by powder X-ray diffraction for phase identifications, electron energy loss spectroscopy for compositional analyses and scanning electron microscopy for grain size measurements. After sintering at 550$$^{circ}$$C, a sintered bulk of MoO$$_{3}$$ with a relative density of 98% was obtained. These properties are good enough for separation of $$^{99m}$$Tc and recycle of Mo.

Oral presentation

Sintering evaluation using coarse-grained MoO$$_{3}$$ powder for a radioisotope production

Sato, Soma*; Nanko, Makoto*; Suzuki, Tsuneo*; Nakayama, Tadachika*; Suematsu, Hisayuki*; Niihara, Koichi*; Tsuchiya, Kunihiko

no journal, , 

no abstracts in English

Oral presentation

Two step pressurization in pulsed electric current sintering of MoO$$_{3}$$ for production of radioactive isotopes

Suematsu, Hisayuki*; Seki, Misaki*; Sato, Soma*; Nanko, Makoto*; Tsuchiya, Kunihiko; Nishikata, Kaori; Suzuki, Tsuneo*; Nakayama, Tadachika*; Niihara, Koichi*

no journal, , 

no abstracts in English

Oral presentation

Pulsed Electric Current Sintering of MoO3 for Production of Radioactive Isotopes

Suematsu, Hisayuki*; Sato, Soma*; Seki, Misaki*; Nanko, Makoto*; Nishikata, Kaori; Suzuki, Yoshitaka; Tsuchiya, Kunihiko; Suzuki, Tsuneo*; Nakayama, Tadachika*; Niihara, Koichi*

no journal, , 

$$^{99m}$$Tc has been utilized as a radioactive isotope in medical applications. The majority of this isotope has been separated from nuclear fission products in testing reactors with highly enriched $$^{235}$$U fuel. However, these reactors have been shut down because of the age and the nuclear security reasons. On the other hand, a nuclear reaction method has been proposed. This method is to irradiate $$^{98}$$Mo by neutrons in a reactor to form $$^{98}$$Mo and then to decay to $$^{99m}$$Tc. As the target, MoO$$_{3}$$ pellets are required. However, because of the low evaporation temperature (700 $$^{circ}$$C) and coarse grain size of $$^{98}$$Mo enriched powder, it was difficult to obtain high density MoO$$_{3}$$ pellets. To overcome this problem, a two-step loading method in pulsed electric current sintering was carried out in this study.

Oral presentation

Nuclide separation by water for development of $$^{99}$$Mo/$$^{99m}$$Tc generator for medical

Seki, Misaki*; Suematsu, Hisayuki*; Nakayama, Tadachika*; Suzuki, Tsuneo*; Niihara, Koichi*; Suzuki, Tatsuya*; Tsuchiya, Kunihiko; Duong Van, D.*

no journal, , 

no abstracts in English

Oral presentation

Porosity control of multifunction geopolymer foam

Ogawa, Toru; Utsumi, Taro*; Terasawa, Toshiharu*; Kudo, Isamu*; Suzuki, Tsuneo*; Nakayama, Tadachika*; Suematsu, Hisayuki*

no journal, , 

For the fuel debris management, we develop the preparation techniques for highly porous geopolymer, which would be used as the matrix of neutron absorber as well as hydrogen recombiner. By adding silicon powder to the raw materials, and hot water in mixing, we demonstrated the capability to prepare geopolymer with high fractions of open pores.

Oral presentation

Pulsed electric current sintering of MoO$$_{3}$$ and the neutron irradiation tests

Suematsu, Hisayuki*; Seki, Misaki; Nakayama, Tadachika*; Nishikata, Kaori; Nanko, Makoto*; Suzuki, Tatsuya*; Tsuchiya, Kunihiko

no journal, , 

Pulsed electric current sintering (PECS) of MoO$$_{3}$$ was carried out for a high density target to produce $$^{99m}$$Tc from $$^{98}$$Mo in a nuclear reactor. The green compacts of MoO$$_{3}$$ were heated in a PECS apparatus with a heating rate of 100 $$^{circ}$$C/min to 450 - 550 $$^{circ}$$C in vacuum and changing the pressurization profile from 0 to 40 MPa. After two step pressurization for sintering at 550 $$^{circ}$$C, the sintered MoO$$_{3}$$ bulk had a relative density of 94%, which was higher than that of one step pressurization. Direct temperature measurements near the sample were carried out. The results indicated that the sample temperature was higher for the two step than for the one step pressurization even in the same die temperature experiments. By the low pressure in two step pressurization, it was thought that open pores remained in the sintered body to reduce MoO$$_{3}$$ in vacuum. This oxygen depleted MoO$$_{3-x}$$ grains showed low electrical resistivity and formed a current path in the sintered body to increase the temperature to increase the relative density.

13 (Records 1-13 displayed on this page)
  • 1