Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wada, Yuki*; Wu, T.*; Wang, D.*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Morimoto, Takeshi*; Nakamura, Yoshitaka*; Shinoda, Taro*; Tsuchiya, Harufumi
Journal of Geophysical Research; Atmospheres, 128(15), p.e2023JD038606_1 - e2023JD038606_9, 2023/08
Times Cited Count:2 Percentile:19.71(Meteorology & Atmospheric Sciences)Tsurumi, Miwa*; Enoto, Teruaki*; Ikkatai, Yuko*; Wu, T.*; Wang, D.*; Shinoda, Taro*; Nakazawa, Kazuhiro*; Tsuji, Naoki*; Diniz, G.*; Kataoka, Jun*; et al.
Geophysical Research Letters, 50(13), p.e2023GL103612_1 - e2023GL103612_9, 2023/07
Times Cited Count:2 Percentile:38.44(Geosciences, Multidisciplinary)Wada, Yuki*; Matsumoto, Takahiro*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Furuta, Yoshihiro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Okada, Go*; Nanto, Hidehito*; et al.
Physical Review Research (Internet), 3(4), p.043117_1 - 043117_31, 2021/12
Hisadomi, Shohei*; Nakazawa, Kazuhiro*; Wada, Yuki*; Tsuji, Yuna*; Enoto, Teruaki*; Shinoda, Taro*; Morimoto, Takeshi*; Nakamura, Yoshitaka*; Yuasa, Takayuki*; Tsuchiya, Harufumi
Journal of Geophysical Research; Atmospheres, 126(18), p.e2021JD034543_1 - e2021JD034543_12, 2021/09
Times Cited Count:18 Percentile:75.62(Meteorology & Atmospheric Sciences)Tsuchiya, Harufumi; Enoto, Teruaki*; Wada, Yuki*; Furuta, Yoshihiro; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Umemoto, Daigo*; Makishima, Kazuo*; GROWTH Collaboration*
Proceedings of Science (Internet), 358, p.1163_1 - 1163_6, 2021/07
Wada, Yuki*; Enoto, Teruaki*; Kubo, Mamoru*; Nakazawa, Kazuhiro*; Shinoda, Taro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Yuasa, Takayuki*; Ushio, Tomoo*; Sato, Yosuke*; et al.
Geophysical Research Letters, 48(7), 11 Pages, 2021/04
Times Cited Count:20 Percentile:83.10(Geosciences, Multidisciplinary)During three winter seasons from November 2016 to March 2019, 11 gamma-ray glows were detected at a single observation site of our ground-based gamma-ray monitoring network in Kanazawa, Japan. These events are analyzed with observations of an X-band radar network, a ceilometer, a disdrometer, and a weather monitor. All the detected glows were connected to convective high-reflectivity regions of more than 35 dBZ, developed up to an altitude of 2 km. They were also accompanied by heavy precipitation of graupels. Therefore, graupels in the lower layer of thunderclouds that correspond to high-reflectivity regions can form strong electric fields producing gamma-ray glows. Also, these events are compared with a limited sample of nondetection cases, but no significant differences in meteorological conditions were found between detection and nondetection cases in the present study.
Wada, Yuki*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Odaka, Hirokazu*; Furuta, Yoshihiro; Tsuchiya, Harufumi
Journal of Geophysical Research; Atmospheres, 125(20), p.e2020JD033193_1 - e2020JD033193_17, 2020/10
Times Cited Count:3 Percentile:12.02(Meteorology & Atmospheric Sciences)Wada, Yuki*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Furuta, Yoshihiro; Odaka, Hirokazu*; Makishima, Kazuo*; Tsuchiya, Harufumi
Journal of Geophysical Research; Atmospheres, 125(20), p.e2020JD033194_1 - e2020JD033194_15, 2020/10
Times Cited Count:2 Percentile:7.43(Meteorology & Atmospheric Sciences)Yuasa, Takayuki*; Wada, Yuki*; Enoto, Teruaki*; Furuta, Yoshihiro; Tsuchiya, Harufumi; Hisadomi, Shohei*; Tsuji, Yuna*; Okuda, Kazufumi*; Matsumoto, Takahiro*; Nakazawa, Kazuhiro*; et al.
Progress of Theoretical and Experimental Physics (Internet), 2020(10), p.103H01_1 - 103H01_27, 2020/10
Times Cited Count:14 Percentile:68.77(Physics, Multidisciplinary)Wada, Yuki*; Nakazawa, Kazuhiro*; Enoto, Teruaki*; Furuta, Yoshihiro; Yuasa, Takayuki*; Makishima, Kazuo*; Tsuchiya, Harufumi
Physical Review D, 101(10), p.102007_1 - 102007_6, 2020/05
Times Cited Count:2 Percentile:13.45(Astronomy & Astrophysics)Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Sato, Mitsuteru*; Ushio, Tomoo*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Yonetoku, Daisuke*; Sawano, Tatsuya*; et al.
Journal of Geophysical Research; Atmospheres, 125(4), p.e2019JD031730_1 - e2019JD031730_11, 2020/02
Times Cited Count:25 Percentile:75.81(Meteorology & Atmospheric Sciences)Wada, Yuki*; Enoto, Teruaki*; Nakazawa, Kazuhiro*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Matsumoto, Takahiro*; Makishima, Kazuo*; Tsuchiya, Harufumi
Physical Review Letters, 123(6), p.061103_1 - 061103_6, 2019/08
Times Cited Count:36 Percentile:86.24(Physics, Multidisciplinary)Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakazawa, Kazuhiro*; Morimoto, Takeshi*; Sato, Mitsuteru*; Matsumoto, Takahiro*; Yonetoku, Daisuke*; et al.
Communications Physics (Internet), 2(1), p.67_1 - 67_9, 2019/06
Times Cited Count:54 Percentile:92.26(Physics, Multidisciplinary)Wada, Yuki*; Bowers, G. S.*; Enoto, Teruaki*; Kamogawa, Masashi*; Nakamura, Yoshitaka*; Morimoto, Takeshi*; Smith, D.*; Furuta, Yoshihiro*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; et al.
Geophysical Research Letters, 45(11), p.5700 - 5707, 2018/06
Times Cited Count:30 Percentile:77.52(Geosciences, Multidisciplinary)Enoto, Teruaki*; Wada, Yuki*; Furuta, Yoshihiro*; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Okuda, Kazufumi*; Makishima, Kazuo*; Sato, Mitsuteru*; Sato, Yosuke*; Nakano, Toshio*; et al.
Nature, 551(7681), p.481 - 484, 2017/11
Times Cited Count:127 Percentile:97.32(Multidisciplinary Sciences)Odaka, Hirokazu*; Ichinohe, Yuto*; Takeda, Shinichiro*; Fukuyama, Taro*; Hagino, Koichi*; Saito, Shinya*; Sato, Tamotsu*; Sato, Goro*; Watanabe, Shin*; Kokubun, Motohide*; et al.
Nuclear Instruments and Methods in Physics Research A, 695, p.179 - 183, 2012/12
Times Cited Count:23 Percentile:82.76(Instruments & Instrumentation)We have developed a new Si/CdTe semiconductor double-sided strip detector (DSD) Compton camera. The camera consists of a 500-m-thick Si-DSD and four layers of 750-
m-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250
m. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5 degrees at 356 keV and 3.5 degrees at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.
Takeda, Shinichiro*; Ichinohe, Yuto*; Hagino, Koichi*; Odaka, Hirokazu*; Yuasa, Takayuki*; Ishikawa, Shinnosuke*; Fukuyama, Taro*; Saito, Shinya*; Sato, Tamotsu*; Sato, Goro*; et al.
Physics Procedia, 37, p.859 - 866, 2012/10
Times Cited Count:24 Percentile:98.49(Physics, Applied)By using new Compton camera consisting of silicon double-sided strip detector (Si-DSD) and CdTe-DSD developed for the ASTRO-H mission, an experiment was conducted to study its feasibility for advanced hotspot monitoring. In addition to hotspot imaging already provided by commercial imaging systems, the identification of the variety of radioisotopes is realized thanks to the good energy resolution given by the semiconductor detectors. Three radioisotopes of Ba (356 keV),
Na (511 keV) and
Cs (662 keV) were individually imaged by applying event selection in the energy window and the
-ray images was correctly overlapped by an optical picture. The detection efficiency of 1.68
10
(effective area: 1.7
10
cm
) and angular resolution of 3.8
were obtained by stacking five detector modules for 662 keV
-ray. The higher detection efficiency required in a specific use can be achieved by stacking more detector modules.
Takamatsu, Kuniyoshi; Sawa, Kazuhiro; Kunitomi, Kazuhiko; Hino, Ryutaro; Ogawa, Masuro; Komori, Yoshihiro; Nakazawa, Toshio*; Iyoku, Tatsuo; Fujimoto, Nozomu; Nishihara, Tetsuo; et al.
Nihon Genshiryoku Gakkai Wabun Rombunshi, 10(4), p.290 - 300, 2011/12
A high temperature (950C) continuous operation has been performed for 50 days on the HTTR from January to March in 2010, and the potential to supply stable heat of high temperature for hydrogen production for a long time was demonstrated for the first time in the world. This successful operation could establish technological basis of HTGRs and show potential of nuclear energy as heat source for innovative thermo-chemical-based hydrogen production, emitting greenhouse gases on a "low-carbon path" for the first time in the world.
Takeda, Shinichiro*; Aono, Hiroyuki*; Okuyama, Sho*; Ishikawa, Shinnosuke*; Odaka, Hirokazu*; Watanabe, Shin*; Kokubun, Motohide*; Takahashi, Tadayuki*; Nakazawa, Kazuhiro*; Tajima, Hiroyasu*; et al.
IEEE Transactions on Nuclear Science, 56(3), p.783 - 790, 2009/06
Times Cited Count:57 Percentile:95.93(Engineering, Electrical & Electronic)Tsuchiya, Harufumi*; Enoto, Teruaki*; Torii, Tatsuo; Nakazawa, Kazuhiro*; Yuasa, Takayuki*; Torii, Shunsuke*; Fukuyama, Taro*; Yamaguchi, Takahiro*; Kato, Hiroshi*; Okano, Shinji*; et al.
Physical Review Letters, 102(25), p.255003_1 - 255003_4, 2009/06
Times Cited Count:72 Percentile:90.33(Physics, Multidisciplinary)During thunderstorms on 2008 September 20, a simultaneous detection of -rays and electrons was made at a mountain observatory in Japan located 2770 m above sea level. Both emissions, lasting 90 seconds, were associated with thunderclouds rather than lightning. The photon spectrum, extending to 10 MeV, can be interpreted as consisting of bremsstrahlung
-rays arriving from a source which is 60-130 m in distance at 90% confidence level. The observed electrons are likely to be dominated by a primary population escaping from an acceleration region in the clouds.