Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 119

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Physical property investigation of gloves for glove boxes in nuclear fuel reprocessing plants; Physical properties of used gloves and estimation of its life-time

Yamamoto, Masahiko; Nishida, Naoki; Kobayashi, Daisuke; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kitao, Takahiko; Kuno, Takehiko

JAEA-Technology 2023-004, 30 Pages, 2023/06

JAEA-Technology-2023-004.pdf:1.94MB

Glove-box gloves, that are used for handling nuclear fuel materials at the Tokai Reprocessing Plant (TRP) of the Japan Atomic Energy Agency, have an expiration date by internal rules. All gloves are replaced at a maximum of every 4-year. However, degrees of glove deterioration varies depending on its usage environment such as frequency, chemicals, and radiation dose. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured and technical evaluation method for the glove life-time is established. It was found that gloves without any defects in its appearance have enough physical properties and satisfies the acceptance criteria values of new gloves. Thus, it was considered that the expired gloves could be used for total of 8-year, by adding 4-year of new glove life-time. In addition, the results of extrapolation by plotting the glove's physical properties versus the used years showed that the physical properties at 8-year is on the safer side than the reported physical properties of broken glove. Also, the data are not significantly different from the physical properties of the long-term storage glove (8 and 23 years). Based on these results, life-time of gloves at TRP is set to be 8-year. The frequency of glove inspections are not changed, and if any defects is found, the glove is promptly replaced. Thus, the risk related to glove usage is not increased. The cost of purchasing gloves, labor for glove replacement, and the amount of generated waste can be reduced by approximately 40%, respectively, resulting in more efficient and rationalized glove management.

JAEA Reports

Differential pressure rise event for filters of HTTR primary helium gas circulators, 1; Investigation of differential pressure rise event

Nemoto, Takahiro; Arakawa, Ryoki; Kawakami, Satoru; Nagasumi, Satoru; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; Furusawa, Takayuki; Inoi, Hiroyuki; et al.

JAEA-Technology 2023-005, 33 Pages, 2023/05

JAEA-Technology-2023-005.pdf:5.25MB

During shut down of the HTTR (High Temperature engineering Test Reactor) RS-14 cycle, an increasing trend of filter differential pressure for the helium gas circulator was observed. In order to investigate this phenomenon, the blower of the primary helium purification system was disassembled and inspected. As a result, it is clear that the silicon oil mist entered into the primary coolant due to the deterioration of the charcoal filter performance. The replacement and further investigation of the filter are planning to prevent the reoccurrence of the same phenomenon in the future.

Journal Articles

Experimental investigation of spray cooling behavior in 4$$times$$4 simulated fuel bundle

Nagatake, Taku; Shibata, Mitsuhiko; Yoshida, Hiroyuki; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Journal of Nuclear Science and Technology, 60(3), p.320 - 333, 2023/03

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In Fukushima Daiichi Nuclear Power Plant accident, failure of cooling system for spent fuel pool occurred and there was a concern that the spent fuels were damaged. Then a safety measures for SFP cooling in severe accident condition is required. As a countermeasure for SFP severe accident, it is considered that a portable spray is used for SFP cooling in such condition. In this research project, the numerical simulation methods have been developed in order to evaluate the applicability of portable spray system for cooling SFPs. And experiments were also performed in order to get a knowledge of spray cooling phenomena and validation data for the numerical simulation methods. As one of the experiments, a cooling experiment by using 4$$times$$4 simulated fuel assembly were performed and temperature distribution during spray cooling process were measured. In this paper, the results of a cooling experiment are reported.

Journal Articles

Investigation of physical properties of glove for glove-box and estimation of its life-time

Kobayashi, Daisuke; Yamamoto, Masahiko; Nishida, Naoki; Miyoshi, Ryuta; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kato, Keisuke; Nishino, Saki; Kuno, Takehiko; Kitao, Takahiko; et al.

Nihon Hozen Gakkai Dai-18-Kai Gakujutsu Koenkai Yoshishu, p.237 - 240, 2022/07

All gloves attached to glove-box in Tokai Reprocessing Plant have a fixed expiration date and have to be replaced every 4-year. However, degrees of glove deterioration are different depending on its usage environment (frequency, chemicals, radiation, etc.), because of rubber products. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured, and the life-time of gloves are estimated. As a result, gloves without any defects in its appearance have enough physical property for acceptance criteria of new glove. The extrapolated physical property of glove is sufficiently larger than the reported values of damaged glove. No deterioration in physical properties of gloves, that are periodically replaced without any defects in its appearance, is observed and the usable life-time of the glove is estimated to be 8 years.

Journal Articles

Neutron reflectometry-based ${it in situ}$ structural analysis of an aligning agent additive for the alignment of nematic liquid crystals on solid substrates

Nemoto, Fumiya*; Yamada, Norifumi*; Hino, Masahiro*; Aoki, Hiroyuki; Seto, Hideki*

Soft Matter, 18(3), p.545 - 553, 2022/01

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 1; Overview

Kaji, Yoshiyuki; Nemoto, Yoshiyuki; Nagatake, Taku; Yoshida, Hiroyuki; Tojo, Masayuki*; Goto, Daisuke*; Nishimura, Satoshi*; Suzuki, Hiroaki*; Yamato, Masaaki*; Watanabe, Satoshi*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

In this research program, cladding oxidation model in SFP accident condition, and numerical simulation method to evaluate capability of spray cooling system which was deployed for spent fuel cooling during SFP accident, have been developed. These were introduced into the severe accident codes such as MAAP and SAMPSON, and SFP accident analyses were conducted. Analyses using Computational Fluid Dynamics (CFD) code were conducted as well for the comparison with SA code analyses and investigation of detail in the SFP accident. In addition, three-dimensional criticality analysis method was developed as well, and safer loading pattern of spent fuels in pool was investigated.

Journal Articles

Numerical evaluation on fluctuation absorption characteristics based on nuclear heat supply fluctuation test using HTTR

Takada, Shoji; Honda, Yuki*; Inaba, Yoshitomo; Sekita, Kenji; Nemoto, Takahiro; Tochio, Daisuke; Ishii, Toshiaki; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro*

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

Nuclear heat utilization systems connected to HTGRs will be designed on the basis of non-nuclear grade standards for easy entry of chemical plant companies, requiring reactor operations to continue even if abnormal events occur in the systems. The inventory control is considered as one of candidate methods to control reactor power for load following operation for siting close to demand area, in which the primary gas pressure is varied while keeping the reactor inlet and outlet coolant temperatures constant. Numerical investigation was carried out based on the results of nuclear heat supply fluctuation tests using HTTR by non-nuclear heating operation to focus on the temperature transient of the reactor core bottom structure by imposing stepwise fluctuation on the reactor inlet temperature under different primary gas pressures below 120C. As a result, it was emerged that the fluctuation absorption characteristics are not deteriorated by lowering pressure. It was also emerged that the reactor outlet temperature did not reach the scram level by increasing the reactor inlet temperature 10 C stepwise at 80% of the rated power as same with the full power case.

Journal Articles

Low-reflection RF window for ACS cavity in J-PARC linac

Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Ao, Hiroyuki*; Naito, Fujio*; Otani, Masashi*; Nemoto, Yasuo*

Journal of Physics; Conference Series, 1067(5), p.052009_1 - 052009_6, 2018/09

 Times Cited Count:0 Percentile:0.11(Physics, Particles & Fields)

In the Japan Proton Accelerator Research Complex (J-PARC) linac, the Annular-ring Coupled Structure (ACS) cavities have been stably operating. To maintain this operation availability, we manufactured three pillbox-type RF windows for the ACS cavities in fiscal year 2015 and 2017. It is desirable to minimize the RF reflection of the RF window to prevent standing waves from exciting between the cavity and the RF window, and not to significantly change the optimized coupling factor between the cavity and the waveguide. To realize the minimization, the relative permittivities of the ceramic disks of the RF windows were evaluated by measuring the resonant frequencies of the pillbox cavity containing the ceramic disk. On the basis of the evaluated relative permittivities, the pillbox-part lengths of the RF windows were determined. The measured Voltage Standing Wave Ratios (VSWRs) of the manufactured RF windows are just about 1.08 and these are applicable for the practical use.

Journal Articles

Network system operation for J-PARC accelerators

Kamikubota, Norihiko*; Yamada, Shuei*; Sato, Kenichiro*; Kikuzawa, Nobuhiro; Yamamoto, Noboru*; Yoshida, Susumu*; Nemoto, Hiroyuki*

Proceedings of 16th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2017) (Internet), p.1470 - 1473, 2018/01

no abstracts in English

Journal Articles

Detection of H$$^{0}$$ particles in MEBT2 chicane of J-PARC linac

Tamura, Jun; Miura, Akihiko; Morishita, Takatoshi; Okabe, Kota; Yoshimoto, Masahiro; Ao, Hiroyuki*; Futatsukawa, Kenta*; Maruta, Tomofumi*; Miyao, Tomoaki*; Nemoto, Yasuo*

Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2308 - 2310, 2017/05

In the Japan Proton Accelerator Research Complex (J-PARC), H$$^{0}$$ particles generated by collisions of accelerated H$$^{-}$$ beams with residual gases are considered as one of the key factors of the residual radiation in the high energy accelerating section of the linac. To diagnose the H$$^{0}$$ particles, the new analysis line for the H$$^{0}$$ particles was installed in the matching section from the separated-type drift tube linac (SDTL) to the annular-ring coupled structure linac (ACS). In the analysis line, the accelerated H$$^{-}$$ ions travel in chicane orbit by the four dipole magnets. In the beam commissioning, we directly detected the H$$^{0}$$ particles by using a carbon plated installed to a wire scanner monitor and indirectly detected the H$$^{0}$$ particles by using a scintillation detector. We also confirmed that the signals change with vacuum condition in the SDTL section.

Journal Articles

Study on spray cooling capability for spent fuel pool at coolant loss accident, 1; Research plan

Liu, W.; Nagatake, Taku; Shibata, Mitsuhiko; Koizumi, Yasuo; Yoshida, Hiroyuki; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 4 Pages, 2016/11

The Fukushima Daiichi NPP accident asks that the accident management of the LOCA in the SFPs must be considered to avoid occurrences of severe accident in the SFPs. To prevent the failure of the spent fuel assemblies at the LOCA, transportable spray systems are expected to be put into use to discharge water into fuel assemblies to moderate the temperature increase. To apply the spray system as a countermeasure for the LOCA of the SFP, the capability of the spray cooling system must be evaluated to keep the spent fuel rods safety. JAEA has started the research project to investigate the spray cooling capability for the SFP. In this research project, we aim to construct a numerical simulation method for evaluating the capability of the spray cooling. To develop the method, the basic key phenomena that affect the cooling performance must be clarified and the validation data required for the code development. To clarify the basic key phenomena that affect the cooling performance, that is, the CCFL and the drop size effect on the CCFL, and to obtain the code validation data, we are planning to carry out 2 experiments with two test sections, the spray visualization experiment and the spray cooling experiment. The spray visualization test section aims to get CCFL data in air-water two-phase flow and to understand the two-phase flow behavior over the upper tie plate. The spray cooling test section aims to get the CCFL data in steam-water two-phase flow and to obtain the validation data. This paper focus on the outline of the research plan for the whole research project.

Journal Articles

Development of beam scrapers using a 3-Mev linac at J-PARC

Hirano, Koichiro; Asano, Hiroyuki; Ishiyama, Tatsuya; Ito, Takashi; Okoshi, Kiyonori; Oguri, Hidetomo; Kondo, Yasuhiro; Kawane, Yusuke; Kikuzawa, Nobuhiro; Sato, Yoshikatsu; et al.

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.310 - 313, 2016/11

We have used a beam scraper with the incident angle of 65deg to reduce the beam power deposition density in the MEBT between a 324 MHz RFQ and a 50-MeV DTL of the J-PARC linac. The 65$$^{circ}$$ scraper was irradiated by the H$$^{-}$$ beam up to particle number of 1.47E22. We observed a lot of surface projections with several hundred micrometers high in the beam irradiation damage on the scraper by using the laser microscope. In order to study the limits of scrapers, we constructed a new 3 MeV linac at J-PARC. We will conduct the scraper irradiation test at the end of this year.

Journal Articles

Nuclear heat supply fluctuation tests by non-nuclear heating with HTTR

Inaba, Yoshitomo; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Sato, Hiroyuki; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.041001_1 - 041001_7, 2016/10

The nuclear heat utilization systems connected to High Temperature Gas-cooled Reactors (HTGRs) will be designed on the basis of non-nuclear grade standards in terms of the easier entry of chemical plant companies and the construction economics of the systems. Therefore, it is necessary that the reactor operations can be continued even if abnormal events occur in the systems. The Japan Atomic Energy Agency has developed a calculation code to evaluate the absorption of thermal load fluctuations by the reactors when the reactor operations are continued after such events, and has improved the code based on the High Temperature engineering Test Reactor (HTTR) operating data. However, there were insufficient data on the transient temperature behavior of the metallic core side components and the graphite core support structures corresponding to the fluctuation of the reactor inlet coolant temperature for further improvement of the code. Thus, nuclear heat supply fluctuation tests with the HTTR were carried out in non-nuclear heating operation to focus on thermal effect. In the tests, the coolant helium gas temperature was heated up to 120$$^{circ}$$C by the compression heat of the gas circulators in the HTTR, and a sufficiently high fluctuation of 17$$^{circ}$$C by devising a new test procedure was imposed on the reactor inlet coolant under the ideal condition without the effect of the nuclear power. Then, the temperature responses of the metallic core side components and the graphite core support structures were investigated. The test results adequately showed as predicted that the temperature responses of the metallic components are faster than those of the graphite structures, and the mechanism of the thermal load fluctuation absorption by the metallic components was clarified.

Journal Articles

Visualization study on two-phase flow behavior at spray cooling for spent fuel pool

Nagatake, Taku; Liu, W.; Uesawa, Shinichiro; Koizumi, Yasuo; Shibata, Mitsuhiko; Yoshida, Hiroyuki; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Konsoryu Shimpojiumu 2016 Koen Rombunshu (USB Flash Drive), 2 Pages, 2016/08

no abstracts in English

Journal Articles

Development of failure evaluation method for BWR Lower head in severe accident; Creep damage evaluation based on thermal-hydraulics and structural analyses

Katsuyama, Jinya; Yamaguchi, Yoshihito; Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 3(3), p.15-00682_1 - 15-00682_12, 2016/06

It is difficult to assess rupture behavior of the lower head of RPV in boiling water reactors (BWRs) due to severe accident like Fukushima Daiichi. This is because BWRs have geometrically complicated structure with a lot of penetrations, and BWR lower head is composed of various types of materials. We have developed an analysis method to predict time and location of BWRs lower head rupture considering creep damage mechanisms based on coupled analysis of three-dimensional thermal-hydraulics (TH) and thermal-elastic-plastic-creep analyses. The detailed three-dimensional model of RPV lower head with control rod guide tubes, stub tubes, and welds are constructed. TH analysis is performed to obtain temperature distribution in relocated debris. Using TH analysis results, structural analysis is carried out to evaluate creep damage distributions using damage criterions. Creep damage evaluation models based on Kachanov and LMP criteria are made. From comparison of damage criterions, it is shown that failure regions of BWR lower head are only penetrations under simulated conditions, although there is a large difference in failure time.

Journal Articles

Improvement of the vacuum pressure of the bunch shape monitor at J-PARC linac

Miyao, Tomoaki*; Miura, Akihiko; Kawane, Yusuke; Tamura, Jun; Nemoto, Yasuo; Ao, Hiroyuki*; Hayashi, Naoki; Oguri, Hidetomo; Ouchi, Nobuo; Mayama, Minoru*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1338 - 1341, 2015/09

no abstracts in English

Journal Articles

Operating status of the ACS in the J-PARC linac

Nemoto, Yasuo; Tamura, Jun; Ito, Takashi; Morishita, Takatoshi; Hirano, Koichiro; Kondo, Yasuhiro; Oguri, Hidetomo; Sugimura, Takashi*; Nammo, Kesao*; Ao, Hiroyuki*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1101 - 1104, 2015/09

In J-PARC linac, ACS (Annular-ring Coupled Structure) has been operating for one and a half years. Through the long term operation, the ACS cavities have been well conditioned. Therefore, the vacuum pressure of the ACS was reduced to 1$$times$$10$$^{-7}$$Pa, which is much lower than the required value, and RF trip rate was steadily decreased. At present, the ACS continues to be stably operating without sacrificing the operating time of the J-PARC accelerator complex. The vacuum leaks caused by the generated crack in the aluminum chain clamps in the ACS beam line have happened five times in the past. To prevent the same situation from occurring, we replaced all the aluminum clamps to the stainless steel clamps. The residual radiation between each ACS cavity is considerably high. It is considered that the CT monitors, which have smaller aperture than that of other instruments in the beam line, contributes to the residual radiation. We are trying to reduce the residual radiation by enlarging the monitor's aperture and by replacing the unused monitors to the titanium ducts in this summer shutdown period.

Journal Articles

Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

Kojima, Atsushi; Umeda, Naotaka; Hanada, Masaya; Yoshida, Masafumi; Kashiwagi, Mieko; Tobari, Hiroyuki; Watanabe, Kazuhiro; Akino, Noboru; Komata, Masao; Mogaki, Kazuhiko; et al.

Nuclear Fusion, 55(6), p.063006_1 - 063006_9, 2015/06

 Times Cited Count:41 Percentile:89.45(Physics, Fluids & Plasmas)

Significant progresses in the extension of pulse durations of powerful negative ion beams have been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long pulse production/acceleration of negative ion beams in JT-60SA and ITER, the new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long pulse production of high-current negative ions for JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, the each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the cesium coverage in large extraction area is one of the common issues between JT-60SA and ITER. As for the long pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high-transmission of negative ions. A long pulse acceleration of 60 s has been achieved at 70 MW/m$$^{2}$$ (683 keV, 100 A/m$$^{2}$$) which has reached to the power density of JT-60SA level of 65 MW/m$$^{2}$$.

Journal Articles

Development of failure evaluation method for BWR lower head in severe accident, 2; Applicability evaluation of the FEM using uni-axial material data for multi-axial deformation analysis

Nemoto, Yoshiyuki; Kato, Hitoshi; Kaji, Yoshiyuki; Yoshida, Hiroyuki

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05

For the evaluation of reactor pressure vessel (RPV) lower head rupture probably occurred during the severe accident in Fukushima Daiichi Nuclear Power Plants, JAEA is conducting the thermal-hydraulics / mechanical coupling analysis. In the mechanical analysis based on the finite element method (FEM), material property data previously obtained from uni-axial material tests are applied. The lower head of BWR such as Fukushima NPP, has complicated structure compared to PWR, with control rod guide tubes, stub tubes, etc., therefore the mechanical analyses need to treat multi-axial deformation of the materials. To perform such mechanical analysis, the applicability of the analytical model using uni-axial data for multi-axial deformation analysis must be validated. In this study, the internal pressure creep tests were performed because which can realize the multi-axial deformation condition. In addition, mechanical analyses were conducted and the analytical results were compared with the experimental data.

Journal Articles

Nuclear heat supply fluctuation test by non-nuclear heating using HTTR

Takada, Shoji; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Inaba, Yoshitomo; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

To investigate the safety design criteria of heat utilization system for the HTGRs, it is necessary to evaluate the effect of fluctuation of thermal load on the reactor. The nuclear heat supply fluctuation test by non-nuclear heating was carried out to simulate the nuclear heat supply test which is carried out in the nuclear powered operation. The test data is used to verify the numerical code to calculate the temperature of core bottom structure to carry out the safety evaluation of abnormal events in the heat utilization system. In the test, the helium gas temperature was heated up to 120$$^{circ}$$C. A sufficiently high temperature disturbance was imposed on the reactor inlet temperature. It was found that the response of temperatures of metallic components such as side shielding blocks was faster than those of graphite blocks in the core bottom structure, which was significantly affected by the heat capacities of components, the level of imposed disturbance and heat transfer performance.

119 (Records 1-20 displayed on this page)