Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Periez, R.*; Bezhenar, R.*; Brovchenko, I.*; Duffa, C.*; Iosjpe, M.*; Jung, K. T.*; Kobayashi, Takuya; Lamego, F.*; Maderich, V.*; Min, B. I.*; et al.
Science of the Total Environment, 569-570, p.594 - 602, 2016/11
Times Cited Count:26 Percentile:61.51(Environmental Sciences)State-of-the art dispersion models were applied to simulate Cs dispersion from Chernobyl Nuclear Power Plant disaster fallout in the Baltic Sea and from Fukushima Daiichi Nuclear Plant releases in the Pacific Ocean after the 2011 tsunami. Models were of different nature, from box to full three-dimensional models, and included water/sediment interactions. Agreement between models was very good in the Baltic. In the case of Fukushima, results from models could be considered to be in acceptable agreement only after a model harmonization process consisting of using exactly the same forcing (water circulation and parameters) in all models. It was found that the dynamics of the considered system (magnitude and variability of currents) was essential in obtaining a good agreement between models. The difficulties in developing operative models for decision-making support in these dynamic environments were highlighted.
Periez, R.*; Brovchenko, I.*; Duffa, C.*; Jung, K.-T.*; Kobayashi, Takuya; Lamego, F.*; Maderich, V.*; Min, B.-I.*; Nies, H.*; Osvath, I.*; et al.
Journal of Environmental Radioactivity, 150, p.247 - 269, 2015/12
Times Cited Count:35 Percentile:68.94(Environmental Sciences)A detailed intercomparison of marine dispersion models applied to the releases from Fukushima Dai-ichi Nuclear Power Plant has been carried out in the frame of MODARIA program, of the IAEA. Models have been compared in such a way that the reasons of the discrepancies between them can be assessed. The overall idea is to harmonize models, making them run with the same forcing in a step-by-step procedure, in such a way that the main agent in producing discrepancy between models can be found. It has been found that the main reason of discrepancies between models is due to the description of the hydrodynamics. However, once this has been suppressed, some variability between model outputs remains due to intrinsic differences between models. The numerical experiments have been carried out for a perfectly conservative radionuclide and for Cs. Model outputs for this radionuclide have also been compared with measurements in water and sediments.
Povinec, P. P.*; Aoyama, Michio*; Biddulph, D.*; Breier, R.*; Buesseler, K. O.*; Chang, C. C.*; Golser, R.*; Hou, X. L.*; Jekovsk, M.*; Jull, A. J. T.*; et al.
Biogeosciences, 10(8), p.5481 - 5496, 2013/08
Times Cited Count:103 Percentile:94.17(Ecology)Radionuclide impact of the Fukushima Dai-ichi Nuclear Power Plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column seawater samples collected during the international expedition in June 2011 were analyzed for Cs, Cs, I and H. The Cs, I and H levels in surface seawater offshore Fukushima varied between 0.002-3.5 Bq/L, 0.01-0.8 Bq/L, and 0.05-0.15 Bq/L, respectively. At the sampling site about 40 km from the coast, where all three radionuclides were analyzed, the Fukushima impact on the levels of these three radionuclides represent an increase above the global fallout background by factors of about 1000, 30 and 3, respectively. The water column data indicate that the transport of Fukushima-derived radionuclides downward to the depth of 300 m has already occurred. The observed Cs levels in surface waters and in the water column are in reasonable agreement with predictions obtained from the Ocean General Circulation Model, which indicates that the radionuclides have been transported from the Fukushima coast eastward. Due to a suitable residence time in the ocean, Fukushima-derived radionuclides will provide useful tracers for isotope oceanography studies on the transport of water masses in the NW Pacific Ocean.
Periez, R.*; Bezhenar, R.*; Brovchenko, I.*; Duffa, C.*; Iosjpe, M.*; Jung, K.-T.*; Kobayashi, Takuya; Lamego, F.*; Maderich, V.*; Min, B.-I.*; et al.
no journal, ,
State-of-the art dispersion models were applied to simulate Cs dispersion from Chernobyl nuclear power plant disaster fallout in the Baltic Sea and from Fukushima Daiichi Nuclear Plant releases in the Pacific Ocean after the 2011 tsunami. Models were of different nature, from box to full three-dimensional models, and included water/sediment interactions. Agreement between models and between models and experimental data (from HELCOM database) was very good in the Baltic. In the case of Fukushima, results from models could be considered to be in acceptable agreement only after a model harmonization process consisting of using exactly the same forcing (water circulation and parameters) in all models. It was found that the dynamics of the considered system (magnitude and variability of currents) was essential in obtaining a good agreement between models. The difficulties in developing operative models for decision-making support in these dynamic environments were highlighted.