Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsui, Hiroya; Watanabe, Kazuhiko*; Mikake, Shinichiro; Niimi, Katsuyuki*; Kobayashi, Shinji*; Toguri, Satohito*
Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.293 - 298, 2020/01
Japan Atomic Energy Agency has been observed seismic motions induced by earthquakes, at ground surface, galleries at 100m, 300m and 500m depth of Mizunami underground research laboratory for over 10 years. The results suggested that the amplitude of the seismic motion decreases with depth as the previous study on crystalline rock at Kamaishi mine indicated. Detailed analysis on the observed seismic motions shows that the Fourier amplitude and the phase difference of the earthquake occurred near epicenter correspond with the one calculated by one-dimensional multiple reflection theory.
Kobayashi, Shinji*; Niimi, Katsuyuki*; Tsuji, Masakuni*; Yamada, Toshiko*; Aoyagi, Yoshiaki; Sato, Toshinori; Mikake, Shinichiro; Osawa, Hideaki
JAEA-Technology 2015-039, 170 Pages, 2016/02
The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) plan consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies regarding restoration or reversal and mitigating of the excavation effect. To develop design and construction planning technologies, and countermeasure technology, the analysis of measured data during earthquake and seismic movement characteristics at deep underground, and the examination of grouting method were carried out. For the characteristics of earthquake ground motion, measurement data obtained by seismometers installed in the Mizunami Underground Laboratory were analyzed, and the comprehensive assessment of the relationship between the measurement data and the geological condition at each depth was performed. As for "Study on grouting method at deep underground ", post grouting was carried out and evaluated based on the Construction plan in FY2013. Furthermore, target of the future R&D was proposed.
Kobayashi, Shinji*; Niimi, Katsuyuki*; Okihara, Mitsunobu*; Tsuji, Masakuni*; Yamada, Toshiko*; Sato, Toshinori; Mikake, Shinichiro; Horiuchi, Yasuharu*; Aoyagi, Yoshiaki
JAEA-Technology 2014-035, 172 Pages, 2015/01
The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) plan consists of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security, and (5) development of technologies regarding restoration or reversal and mitigating of the excavation effect. To develop design and construction planning technologies, and countermeasure technology, the analysis of measured data during earthquake and seismic movement characteristics at deep underground, and the examination of grouting method were carried out. The knowledge of the seismic movements at deep underground was obtained by which observation records of seismometers at Mizunami underground research laboratory were analyzed to verify the earthquake-resistant design of the shafts and tunnels. As for" Study on grouting method at deep underground", Existing post-grouting methods for crystalline rock were reviewed, the applicability of pre-grouting technology was evaluated and study on experiment plan in MIU was carried out following the previous year.
Fukaya, Masaaki*; Noda, Masaru*; Hata, Koji*; Takeda, Nobufumi*; Akiyoshi, Kenji*; Ishizeki, Yoshikazu*; Kaneda, Tsutomu*; Sato, Shin*; Shibata, Chihoko*; Ueda, Tadashi*; et al.
JAEA-Technology 2014-019, 495 Pages, 2014/08
The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) plan consists of (1) research on engineering technology deep underground, and (2) research on engineering technology as a basis of geological disposal. The former research is mainly aimed in this study, which is categorized in (a) development of design and construction planning technologies, (b) development of construction technologies, (c) development of countermeasure technologies, and (d) development of technologies for security. In this study, the researches on engineering technology are being conducted in these four categories by using data measured during construction as a part of the second phase of the MIU plan.
Niimi, Katsuyuki*; Kobayashi, Shinji*; Nobuto, Jun*; Matsui, Hiroya; Yamamoto, Masaru
Proceedings of European Rock Mechanics Symposium (EUROCK 2012) (CD-ROM), 13 Pages, 2012/05
JAEA has been conducting geoscientific research and development at underground research laboratories under construction in Japan. In this study, frequency and wave propagation characteristics were analyzed using seismic records for six earthquakes obtained with the seismometers in URL. It was found that seismic motions were amplified from the deep underground to the shallow surface and that the wave propagation characteristics were different in NS and EW directions. It was also assumed that the recorded data of the seismometer on the ground might be influenced by aboveground structures. Then, numerical simulations using SHAKE, which is commonly used for seismic response analysis in Japan and had been applied to the earthquake resistance design in Phase I, were carried out to compare analytical results and observed records. The results showed that the calculated results agreed well with those observed when epicenters are close.