Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Application study on low alkaline cementitious materials for deep geological repository of high level radioactive wastes, 2; Organization of previous finding and understanding of material properties of low alkaline cement (Joint research)

Kobayashi, Yasushi; Yamada, Tsutomu; Naito, Morimasa; Yui, Mikazu; Nakayama, Masashi; Sato, Haruo; Nishida, Takahiro*; Hironaga, Michihiko*; Yamamoto, Takeshi*; Sugiyama, Daisuke*; et al.

JAEA-Research 2009-013, 70 Pages, 2009/06

JAEA-Research-2009-013.pdf:8.85MB

Cementitious materials will be used to ensure construction and operational safety and work efficiency in a deep geological repository. The low alkaline cement has been developed to reduce uncertainties due to hyper alkaline for the long-term safety performance of the repository system. Functions of cementitious material required in each phase of repository construction, operation and closure were summarized in a separate report entitled "Application Study on Low Alkaline Cementitious Materials for Deep Geological Repository of High Level Radioactive Wastes (Phase I) "In this report, properties of low alkaline cement/concrete which have been developed both at home and abroad, and recipes of the low alkaline concrete taken account of application to the repository component have been investigated. Fresh and hardened properties of the low alkaline cement are equivalent to the OPC and the low alkaline cement has an advantage over OPC in terms of leaching resistance. The HFSC developed by JAEA, which belongs to a pozzolanic type low alkaline cement will be able to apply to the shotcrete and the lining concrete by choosing an adequate recipe. Clarification of influences of the chemical composition of groundwater on leachate properties of the hydrates, examination of pH measurement of cement leachate, evaluation of corrosion behavior of rebar embedded in the HFSC concrete are raised as open questions for future activities.

JAEA Reports

Application study on low alkaline cementitious materials for deep geological repository of high level radioactive wastes, 1; Requirements for use of cementitious materials in deep geological repository system (Joint research)

Kobayashi, Yasushi; Yamada, Tsutomu; Naito, Morimasa; Yui, Mikazu; Nakayama, Masashi; Sato, Haruo; Nishida, Takahiro*; Hironaga, Michihiko*; Yamamoto, Takeshi*; Sugiyama, Daisuke*; et al.

JAEA-Research 2008-112, 43 Pages, 2009/03

JAEA-Research-2008-112.pdf:4.58MB

In deep geological repository, use of cementitious material for rock support, lining, and grouting is essential for construction and operation and possibly raises in groundwater pH due to leachate from the cements. Since this hyperalkaline condition may lead to degradation of barriers, there is concern that it gives significant impact on long-term safety performance of the repository system. Because of these backgrounds, developments of low alkaline cement have been conducted both at home and abroad. JAEA is now planning to conduct an in-situ test for shotcreting using low alkaline cement at the Horonobe URL. On the other hand, CRIEPI has studied and developed cementitious materials for disposal of radioactive wastes. This joint research report summarizes requirements and expected performance of cementitious materials in repository taking account of surrounding conditions in each stage of the repository program so as to reflect them to further development of the low alkaline cement.

Journal Articles

Determination of crystal structure and charge density of (Ba$$_{0.5}$$Sr$$_{0.5}$$)(Co$$_{0.8}$$Fe$$_{0.2}$$)O$$_{2.33}$$ by Rietveld refinement and maximum entropy method analysis

Ito, Takanori*; Nishida, Yuki*; Tomita, Aya*; Fujie, Yoshinori*; Kitamura, Naoto*; Idemoto, Yasushi*; Osaka, Keiichi*; Hirosawa, Ichiro*; Igawa, Naoki

Solid State Communications, 149(1-2), p.41 - 44, 2009/01

 Times Cited Count:33 Percentile:77.94(Physics, Condensed Matter)

The crystal structure and charge density of (Ba$$_{0.5}$$Sr$$_{0.5}$$)(Co$$_{0.8}$$Fe$$_{0.2}$$)O$$_{2.33}$$ were investigated by the Rietveld refinement method and the maximum entropy method by using neutron and synchrotron X-ray diffraction. The crystal structure was refined by using the split atom model to cation sites with the space group, ${it Pnma}$. The site occupancies of O1(4${it c}$) and O2(8${it d}$) sites were 0.59 and 0.87, respectively. It was found that the (Co, Fe)-O2 plane in the sample has anisotropic covalent and ionic bands, and that the (Ba, Sr)-O1 bond was ionic with a low charge density.

Journal Articles

Study of plasma termination using high-Z noble gas puffing in the JT-60U tokamak

Bakhtiari, M.; Tamai, Hiroshi; Kawano, Yasunori; Kramer, G. J.*; Isayama, Akihiko; Nakano, Tomohide; Kamiya, Kensaku; Yoshino, Ryuji; Miura, Yukitoshi; Kusama, Yoshinori; et al.

Nuclear Fusion, 45(5), p.318 - 325, 2005/05

 Times Cited Count:41 Percentile:79.32(Physics, Fluids & Plasmas)

In the previous works we had shown that injecting a mixture of large amounts of hydrogen and small amounts of argon can terminate a tokamak discharge quickly with avoiding runaway electron generation. In this work we have done the same experiments but with different gases in addition to argon. In fact we compared the effect of the puffing of argon, krypton, and xenon gases with and without simultaneous hydrogen gas puffing on disruption mitigation. We observed that injecting all impurities in the form of an admixture in hydrogen lead to faster plasma shutdowns with less runaway electron generation. We also found that injecting krypton gas (with or without hydrogen) seems to be a good candidate for plasma shutdown purposes since it induces low heat flux to divertor plates and avoids runaway electron generation more effectively.

Journal Articles

Fast plasma shutdown scenarios in the JT-60U tokamak using intense mixed gas puffing

Bakhtiari, M.; Kawano, Yasunori; Tamai, Hiroshi; Miura, Yushi; Yoshino, Ryuji; Nishida, Yasushi*

Nuclear Fusion, 42(10), p.1197 - 1204, 2002/10

 Times Cited Count:45 Percentile:80.52(Physics, Fluids & Plasmas)

no abstracts in English

JAEA Reports

Basic research on proton acceleration based on lasers and plasmas, JAERI's nuclear research promotion program, H10-008 (Contract research)

Ogata, Atsushi*; Okamoto, Hiromi*; Kusano, Kanya*; Endo, Ichita*; Nishida, Yasushi*; Sakae, Takeji*; Arai, Masatoshi*; Nakanishi, Hiroshi*; Kondo, Kiminori*

JAERI-Tech 2002-007, 28 Pages, 2002/03

JAERI-Tech-2002-007.pdf:1.34MB

no abstracts in English

Journal Articles

Fast thermal shutdown of tokamak discharges without runaway electron avalanching

Bakhtiari, M.; Yoshino, Ryuji; Nishida, Yasushi*

Fusion Science and Technology, 41(2), p.77 - 87, 2002/03

 Times Cited Count:6 Percentile:41.16(Nuclear Science & Technology)

no abstracts in English

7 (Records 1-7 displayed on this page)
  • 1