Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakano, Hiroko; Nishikata, Kaori; Nagata, Hiroshi; Ide, Hiroshi; Hanakawa, Hiroki; Kusunoki, Tsuyoshi
JAEA-Review 2022-073, 23 Pages, 2023/01
A practical training course using the JMTR (Japan Materials Testing Reactor) and other research infrastructures was held from July 24th to July 31st in 2019 for Asian young researchers and engineers. This course was adopted as Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) which is the project of the Japan Science and Technology Agency, and this course aims to enlarge the number of high-level nuclear researchers/engineers in Asian countries which are planning to introduce a nuclear power plant, and to promote the use of facilities in future. In this year, 12 young researchers and engineers joined the course from 6 countries. This course consists of lectures, which are related to irradiation test research, safety management of nuclear reactors, nuclear characteristics of the nuclear reactors, etc., practical training such as practice of research reactor operation using simulator and technical tour of nuclear facilities on nuclear energy. The content of this course in FY 2019 is reported in this paper.
Fujita, Yoshitaka; Seki, Misaki; Ngo, M. C.*; Do, T. M. D.*; Hu, X.*; Yang, Y.*; Takeuchi, Tomoaki; Nakano, Hiroko; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; et al.
KURNS Progress Report 2021, P. 118, 2022/07
no abstracts in English
Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Daigo, Fumihisa; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.
KURNS Progress Report 2020, P. 136, 2021/08
no abstracts in English
Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kato, Yoshiaki; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Hori, Junichi*; et al.
KURNS Progress Report 2019, P. 157, 2020/08
no abstracts in English
Eguchi, Shohei; Nakano, Hiroko; Otsuka, Noriaki; Nishikata, Kaori; Nagata, Hiroshi; Ide, Hiroshi; Kusunoki, Tsuyoshi
JAEA-Review 2019-012, 22 Pages, 2019/10
A practical training course using the JMTR and other research infrastructures was held from July 31st to August 7th in 2018 for Asian young researchers and engineers. This course was adopted as Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) which is the project of the Japan Science and Technology Agency, and this course aims to enlarge the number of high-level nuclear researchers/engineers in Asian countries which are planning to introduce a nuclear power plant, and to promote the use of facilities in future. In this year, 11 young researchers and engineers joined the course from 6 countries. This course consists of lectures, which are related to irradiation test research, safety management of nuclear reactors, nuclear characteristics of the nuclear reactors, etc., practical training such as practice of research reactor operation using simulator and technical tour of nuclear facilities on nuclear energy. The content of this course in FY 2018 is reported in this paper.
Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.
KURNS Progress Report 2018, P. 155, 2019/08
no abstracts in English
Fujita, Yoshitaka; Nishikata, Kaori; Namekawa, Yoji*; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Zhang, J.*
KURRI Progress Report 2017, P. 126, 2018/08
no abstracts in English
Suzuki, Yoshitaka; Kitagawa, Tomoya*; Namekawa, Yoji*; Matsukura, Minoru*; Nishikata, Kaori; Mimura, Hitoshi*; Tsuchiya, Kunihiko
Transactions of the Materials Research Society of Japan, 43(2), p.75 - 80, 2018/04
no abstracts in English
Shibata, Hiroshi; Nakano, Hiroko; Suzuki, Yoshitaka; Otsuka, Noriaki; Nishikata, Kaori; Takeuchi, Tomoaki; Hirota, Noriaki; Tsuchiya, Kunihiko
JAEA-Testing 2017-002, 138 Pages, 2017/12
From the viewpoints of utilization improvement of the Japan Materials Testing Reactor (JMTR), the experimental devices have been established for the out-pile tests in the irradiation technology development building. The devices for the irradiation capsule assembly, material tests and inspections were established at first and experimental data were accumulated before the neutron irradiation tests. On the other hand, after the Great East Japan Earthquake, the repairs and earthquake-resistant measures of the existing devices were carried out. New devices and equipments were also established for the R&D program for power plant safety enhancement of the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry (METI) and Mo/
Tc production development under the Tsukuba International Strategic Zone. This report describes the outline and basic operation manuals of the devices established from 2011 to 2016 and the management points for the safety works in the irradiation technology development building.
Suzuki, Yoshitaka; Ishida, Takuya*; Suzuki, Yumi*; Matsukura, Minoru*; Kurosaki, Fumio*; Nishikata, Kaori; Mimura, Hitoshi*; Tsuchiya, Kunihiko
JAEA-Technology 2016-027, 24 Pages, 2016/12
The research and development (R&D) on the production of Mo/
Tc by (n,
) method has been carried out in the Neutron Irradiation and Testing Reactor Center. The
Mo production by (n,
) reaction is a simple and easy method, and it also is advantageous from viewpoints of nuclear proliferation resistance and waste management. However, it is difficult to produce the
Tc solution with high radioactive concentration because the specific radioactivity of
Mo by this method is extremely low. Up to now, various Mo absorbents such as Polyzirconium Compound (PZC) and Polytitanium Compound (PTC) have been developed with high Mo adsorption efficiency. It is necessary for utilization to the generator of these absorbents to evaluate the effect of elements containing these absorbents and to assure the quality of
Tc solution. In this report, the status of R&D of the Mo adsorbents was investigated. The alumina as Mo adsorbent, which uses in medical
Mo/
Tc generator, was focused and Mo adsorption/desorption properties of three kinds of alumina was evaluated by different properties such as crystal structure and specific surface.
Ishida, Takuya; Suzuki, Yoshitaka; Nishikata, Kaori; Yonekawa, Minoru; Kato, Yoshiaki; Shibata, Akira; Kimura, Akihiro; Matsui, Yoshinori; Tsuchiya, Kunihiko; Sano, Tadafumi*; et al.
KURRI Progress Report 2015, P. 64, 2016/08
no abstracts in English
Ishida, Takuya; Shiina, Takayuki*; Ota, Akio*; Kimura, Akihiro; Nishikata, Kaori; Shibata, Akira; Tanase, Masakazu*; Kobayashi, Masaaki*; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.
JAEA-Technology 2015-030, 42 Pages, 2015/11
The research and development (R&D) on the production of Mo/
Tc by neutron activation method ((n,
) method) using JMTR has been carried out in the Neutron Irradiation and Testing Reactor Center. The specific radioactivity of
Mo by (n,
) method is extremely low compared with that by fission method ((n,f) method), and as a result, the radioactive concentration of the obtained
Tc solution is also lowered. To solve the problem, we propose the solvent extraction with methyl ethyl ketone (MEK) for recovery of
Tc from
Mo produced by (n,
) method. We have developed the
Mo/
Tc separation/extraction/concentration devices and have carried out the performance tests for recovery of
Tc from
Mo produced by (n,
) method. In this paper, in order to establish an experimental system for
Mo/
Tc production, the R&D results of the system are summarized on the improvement of the devices for high-recovery rate of
Tc, on the dissolution of the pellets, which is the high-density molybdenum trioxide (MoO
) pellets irradiated in Kyoto University Research Reactor (KUR), on the production of
Tc, and on the inspection of the recovered
Tc solutions.
Nishikata, Kaori; Ishida, Takuya; Yonekawa, Minoru; Kato, Yoshiaki; Kurosawa, Makoto; Kimura, Akihiro; Matsui, Yoshinori; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.
KURRI Progress Report 2014, P. 109, 2015/07
As one of effective applications of the Japan Materials Testing Reactor (JMTR), JAEA has a plan to produce Mo by (n,
) method ((n,
)
Mo production), a parent nuclide of
Tc. In this study, preliminary irradiation test was carried out with the high-density molybdenum trioxide (MoO
) pellets in the hydraulic conveyer (HYD) of the Kyoto University Research Reactor (KUR) and the
Tc solution extracted from
Mo was evaluated. After the irradiation test of the high-density MoO
pellets in the KUR,
Tc was extracted from the Mo solution and the recovery rate of
Tc achieved the target values. The
Tc solution also got the value that satisfied the standard value for
Tc radiopharmaceutical products by the solvent extraction method.
Nishikata, Kaori; Kimura, Akihiro; Ishida, Takuya; Shiina, Takayuki*; Ota, Akio*; Tanase, Masakazu*; Tsuchiya, Kunihiko
JAEA-Technology 2014-034, 34 Pages, 2014/10
As a part of utilization expansion after the Japan Material Testing Reactor (JMTR) re-start, research and development (R&D) on the production of medical radioisotope Mo/
Tc by (n,
) method using JMTR has been carried out in the Neutron Irradiation and Testing Reactor Center of the Japan Atomic Energy Agency.
Mo is usually produced by fission method. On the other hand,
Mo/
Tc production by the (n,
) method has advantages for radioactive waste, cost reduction and non-proliferation. However, the specific radioactivity per unit volume by the (n,
) method is low compared with the fission method, and that is the weak point of the (n,
) method. This report summarizes the investigation of raw materials, the fabrication tests of high-density MoO
pellets by the plasma sintering method for increasing of
Mo contents and the characterization of sintered high-density MoO
pellets.
Nishikata, Kaori; Ishida, Takuya; Yonekawa, Minoru; Kato, Yoshiaki; Kurosawa, Makoto; Kimura, Akihiro; Matsui, Yoshinori; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.
KURRI Progress Report 2013, P. 242, 2014/10
As one of effective applications of the Japan Materials Testing Reactor (JMTR), JAEA has a plan to produce Mo-99 (Mo) by (n,
) method ((n,
)
Mo production), a parent nuclide of
Tc. In this study, preliminary irradiation tests were carried out with the high-density MoO
pellets in the KUR and the
Mo production amount was evaluated between the calculation results and measurement results.
Kimura, Akihiro; Nishikata, Kaori; Nikolayevich, A.*; Vladimirovna, T.*; Chakrova, Y.*; Tsuchiya, Kunihiko
JAEA-Technology 2013-048, 30 Pages, 2014/03
In this study, the irradiation tests of the high-density MoO pellets and PIEs were carried out with WWR-K for the realization of
Mo/
Tc production procedure by the (n,
) method. High-density MoO
pellets were irradiated. After neutron irradiation, the irradiated pellets were carried out PIEs, and the pellets were sound from the results. The irradiated pellets were also dissolved with NaOH solution at 100
C. The solution speed of the pellets at 100
C was faster than that at 50
C and the it was clear that dissolved temperature of pellet was important factor for the solution speed.
Mo adsorption/
Tc elution tests were carried out with PZC and PTC. It was obtained that the properties of
Mo adsorption/
Tc elution of these Mo adsorbents was equivalent in previous results. As the these results, the prospects are bright for the realization of
Mo production procedure by the (n,
) method.
Kimura, Akihiro; Niizeki, Tomotake*; Kakei, Sadanori*; Chakrova, Y.*; Nishikata, Kaori; Hasegawa, Yoshio*; Yoshinaga, Hideo*; Chakrov, P.*; Tsuchiya, Kunihiko
JAEA-Technology 2013-025, 40 Pages, 2013/10
Neutron Irradiation and Testing Reactor Center has developed the production of a medical isotope of Mo, the parent nuclide of
Tc by the (n,
) method using JMTR. The (n,
) method has an advantage of easy manufacturing process and low radioactive wastes generation. However, the low radioactivity concentration of
Tc is remaining as an issue. Therefore, PZC and PTC have been developed as adsorbent of molybdenum. Meanwhile, it is necessary to recycle the absorbent and Mo for the reduction of the radioactive waste of used-adsorbent and the effective use of limited resources, respectively. This report summarizes results of the synthesis of Mo adsorbents such as PZC and PTC, and the performance tests.
Kimura, Nobuaki; Takeuchi, Tomoaki; Shibata, Akira; Takemoto, Noriyuki; Kimura, Akihiro; Naka, Michihiro; Nishikata, Kaori; Tanimoto, Masataka; Tsuchiya, Kunihiko; Sano, Tadafumi*; et al.
KURRI Progress Report 2012, P. 209, 2013/10
In research reactors, CCD cameras are used to observe reactor core for reactor operation management, e.g. to prevent debris from falling. In order to measure the reactor power and fuel burnup exactly by means of observation of Cherenkov light, the development of the on-line measurement device started in 2009. In this study, the wavelength and the absolute irradiance of the Cherenkov light were measured by a spectrometer, and the Cherenkov light was observed by the CCD camera. As a result, the measurement value is good agreement with the nominal value. On the other hand, the value by the visible imaging system was obtained the same tendency of nominal transmittance value of ND-filters.
Kakei, Sadanori*; Kimura, Akihiro; Niizeki, Tomotake*; Ishida, Takuya; Nishikata, Kaori; Kurosawa, Makoto; Yoshinaga, Hideo*; Hasegawa, Yoshio*; Tsuchiya, Kunihiko
Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 7 Pages, 2013/10
The Japan Materials Testing Reactor (JMTR) is expected to contribute to the expansion of industrial utilization, such as the domestic production of Mo for the medical diagnosis medicine
Tc. Production by the (n,
) method is proposed as domestic
Mo production in JMTR because of the low amount of radioactive wastes and the easy
Mo/
Tc production process. Molybdenum oxide (MoO
) pellets, poly zirconium compounds (PZC) and poly titanium compounds (PTC) are used as the irradiation target and generator for the production of
Mo/
Tc by the (n,
) method. However, it is necessary to use the enriched
MoO
, which is very expensive, to increase the specific activity of
Mo. Additionally, a large amount of used PZC and PTC is generated after the decay of
Mo. Therefore, this recycling technology of used PZC/PTC has been developed to recover molybdenum (Mo) as an effective use of resources and a reduction of radioactive wastes. The total Mo recovery rate of this process was 95.8%. From the results of the hot experiments, we could demonstrate that the recovery of MoO
and the recycling of PZC are possible. In the future, the equipment of recovering Mo will be installed in JMTR-Hot Cell, and this recycling process will be able to contribute to the reduction of production costs of
Tc and the reduction of radioactive wastes.
Tsuchiya, Kunihiko; Nishikata, Kaori; Tanase, Masakazu*; Shiina, Takayuki*; Ota, Akio*; Kobayashi, Masaaki*; Yamamoto, Asaki*; Morikawa, Yasumasa*; Takeuchi, Nobuhiro*; Kaminaga, Masanori; et al.
Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 9 Pages, 2013/10
no abstracts in English