Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.
Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12
Okita, Shoichiro; Mizuta, Naoki; Takamatsu, Kuniyoshi; Goto, Minoru; Yoshida, Katsumi*; Nishimura, Yosuke*; Okamoto, Koji*
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05
Oishi, Kazuki*; Igarashi, Daisuke*; Tatara, Ryoichi*; Kawamura, Yukihiko*; Hiroi, Kosuke; Suzuki, Junichi*; Umegaki, Izumi*; Nishimura, Shoichiro*; Koda, Akihiro*; Komaba, Shinichi*; et al.
Journal of Physics; Conference Series, 2462, p.012048_1 - 012048_5, 2023/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.
Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Murase, Kiyoka*; Kataoka, Ryuho*; Nishiyama, Takanori*; Nishimura, Koji*; Hashimoto, Taishi*; Tanaka, Yoshimasa*; Kadokura, Akira*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Ogawa, Yasunobu*; et al.
Journal of Space Weather and Space Climate (Internet), 12, p.18_1 - 18_16, 2022/06
Times Cited Count:3 Percentile:25.39(Astronomy & Astrophysics)We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP event for which the most comprehensive dataset from ground-based and space-born instruments was available. The mesospheric ionization signature reached below 70 km altitude and continued for ~15 min until the substorm onset, as observed by the PANSY radar and imaging riometer at Syowa Station in the Antarctic region. We also used energetic electron flux observed by the Arase and POES 15 satellites as the input for the air-shower simulation code PHITS to quantitatively estimate the mesospheric ionization rate. Combining the cutting-edge observations and simulations, we shed new light on the space weather impact of the EEP events during geomagnetically quiet times, which is important to understand the possible link between the space environment and climate.
Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09
Times Cited Count:3 Percentile:28.57(Nuclear Science & Technology)A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2
s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion (
CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after
CF reaction.
Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08
Times Cited Count:3 Percentile:28.57(Nuclear Science & Technology)A muon (
) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by
and form a muonic hydrogen molecular ion, dt
. Due to the short inter-nuclear distance of dt
, the nuclear fusion, d +t
+ n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion (
CF). Recently, the interest on
CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of
CF in a two-layered hydrogen isotope target.
Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.
Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08
Times Cited Count:20 Percentile:82.86(Optics)Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.
Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07
Times Cited Count:10 Percentile:55.63(Physics, Multidisciplinary)Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for
Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.
Abe, Mitsushi*; Bae, S.*; Beer, G.*; Bunce, G.*; Choi, H.*; Choi, S.*; Chung, M.*; da Silva, W.*; Eidelman, S.*; Finger, M.*; et al.
Progress of Theoretical and Experimental Physics (Internet), 2019(5), p.053C02_1 - 053C02_22, 2019/05
Times Cited Count:167 Percentile:99.36(Physics, Multidisciplinary)This paper introduces a new approach to measure the muon magnetic moment anomaly
and the muon electric dipole moment (EDM)
at the J-PARC muon facility. The goal of our experiment is to measure
and
using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon g-2 experiments with unprecedented quality of the storage magnetic field. Additional significant differences from the present experimental method include a factor of 1000 smaller transverse emittance of the muon beam (reaccelerated thermal muon beam), its efficient vertical injection into the solenoid, and tracking each decay positron from muon decay to obtain its momentum vector. The precision goal for
is a statistical uncertainty of 450 parts per billion (ppb), similar to the present experimental uncertainty, and a systematic uncertainty less than 70 ppb. The goal for EDM is a sensitivity of
e
cm.
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:17 Percentile:98.70(Quantum Science & Technology)
-ray spectra obtained via aerial radiation monitoring using an unmanned helicopterOchi, Kotaro; Sasaki, Miyuki; Ishida, Mutsushi*; Hamamoto, Shoichiro*; Nishimura, Taku*; Sanada, Yukihisa
International Journal of Environmental Research and Public Health, 14(8), p.926_1 - 926_14, 2017/08
Times Cited Count:5 Percentile:23.55(Environmental Sciences)After the Fukushima Daiichi Nuclear Power Plant accident, the vertical distribution of radiocesium in soil has been investigated to better understand the behavior of radiocesium in the environment. The typical method used for measuring the vertical distribution of radiocesium is troublesome because it requires collection and measurement of the activity of soil samples. In this study, we established a method of estimating the vertical distribution of radiocesium by focusing on the characteristics of
-ray spectra obtained via aerial radiation monitoring using an unmanned helicopter. In this method, the change in the ratio of direct
rays to scattered
rays at various depths in the soil was utilized to quantify the vertical distribution of radiocesium. The results show a positive correlation between the abovementioned and the actual vertical distributions of radiocesium measured in the soil samples.
Miyashita, Konan*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
Muon catalyzed fusion (
CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes. In this work, we have designed the shape of the thermal shield to reduce the background noise.
Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
We are developing an experimental system to measure the kinetic energy distribution of regenerated muons emitted after muon catalytic nuclear reactions. The trajectory of the regenerated muon emitted from a solid hydrogen target, and the transport efficiency of the regenerated muon and its dependence on the emitted position are calculated/discussed using SIMION code.
Konishi, Ren*; Okutsu, Kenichi*; Kino, Yasushi*; Sasaki, Kyosuke*; Nakashima, Ryota*; Yamashita, Takuma*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; et al.
no journal, ,
Muon catalyzed fusion (
CF) is a cyclic reaction where a negatively charged muon itself acts like a catalyst of nuclear fusion between hydrogen isotopes. In this work, we used PHITS code to simulate the behavior of the low-energy muon in a thin layer of the solid hydrogen.
Yoshida, Katsumi*; Gubarevich, A.*; Tachibana, Yukio; Takamatsu, Kuniyoshi; Okita, Shoichiro; Nishimura, Yosuke*; Okamoto, Koji*
no journal, ,
Ikemoto, Megumi*; Somekawa, Jun*; Neki, Arata*; Konishi, Ren*; Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; et al.
no journal, ,
no abstracts in English
Nakashima, Ryota*; Okutsu, Kenichi*; Kino, Yasushi*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
no journal, ,
The recycling muon emitted after the muon catalized fusion (
CF) has a kinetic energy between a few keV to 10 keV. To observed the kinetic energy distribution of the recycling muon, we have to guide and inject muons to Ti foil, and measure the muonic X-ray. In this work, we utilized SIMION code to calculate the electric field and the trajectory of muons from deuteron target to Ti foil.
Konishi, Ren*; Okutsu, Kenichi*; Kino, Yasushi*; Sasaki, Kyosuke*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Yamashita, Takuma*; Okada, Shinji*; Sato, Motoyasu*; et al.
no journal, ,
When muons are injected into a deuterium thin film target, muon molecules are formed. The muons released after intramolecular fusion (recycling muons) are important for the development of slow muon beams. In this study, corresponding to an experiment in which recycling muons are transported using a coaxial transport tube, the energy distribution of scattered muons, muons after deceleration, and background radiation due to bremsstrahlung by decay electrons and neutrons are analyzed by numerical simulations.
Takamatsu, Kuniyoshi; Okita, Shoichiro; Tachibana, Yukio; Nishimura, Yosuke*; Okamoto, Koji*
no journal, ,
In this study, accident analyses of high-power density HTGRs adopting SiC-matrixed fuel compacts and feasibility study were conducted. Specifically, for the feasibility study, rapid depressurization accidents were analyzed using the two-dimensional unsteady heat transfer analysis code for safety evaluation of HTGRs. As a result of the rapid depressurization accident analyses, the fuel temperature and RPV temperature distributions in the HTGRs with high-power density were clarified, and it was confirmed that the maximum fuel temperature does not exceed 1400
C. In other words, even if a rapid depressurization accident occurs, the high-power density HTGRs adopting SiC-matrixed fuel compacts will be able to have excellent passive safety features.