Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Solubility of uranyl nitrate precipitates with $$N$$-Alkyl-2-pyrrolidone derivatives (Alkyl = $$n$$-propyl, $$n$$-butyl, $$iso$$-butyl, and cyclohexyl)

Takao, Koichiro*; Noda, Kyoko*; Nogami, Masanobu*; Sugiyama, Yuichi*; Harada, Masayuki*; Morita, Yasuji; Nishimura, Kenji*; Ikeda, Yasuhisa*

Journal of Nuclear Science and Technology, 46(10), p.995 - 999, 2009/10

 Times Cited Count:14 Percentile:66.94(Nuclear Science & Technology)

We have been developing an advanced reprocessing system for spent FBR fuels based on precipitation method using pyrrolidone derivatives. In the present study, the solubility of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(NRP)$$_{2}$$ (NRP = $$N$$-alkyl-2-pyrrolidone, alkyl = $$n$$-propyl, $$n$$-butyl, $$iso$$-butyl and cyclohexyl) in aqueous solutions with HNO$$_{3}$$ has been examined. As a result, the solubility of each species of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(NRP)$$_{2}$$ generally decreases with increasing concentrations of HNO$$_{3}$$ and NRP ($$C$$(HNO$$_{3}$$) and $$C$$(NRP), respectively). The solubility of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(NRP)$$_{2}$$ also depends on the type of NRP; a higher hydrophobicity of NRP generally leads to a lower solubility of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(NRP)$$_{2}$$. The logarithms of effective solubility products ($$K$$$$_{rm eff}$$) of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(NRP)$$_{2}$$ at different $$C$$(HNO$$_{3}$$) values and 293 K were evaluated.

Journal Articles

Molecular and crystal structures of uranyl nitrate complexes with $$N$$-alkylated 2-pyrrolidone derivatives; Design and optimization of promising precipitant for uranyl ion

Takao, Koichiro*; Noda, Kyoko*; Morita, Yasuji; Nishimura, Kenji*; Ikeda, Yasuhisa*

Crystal Growth & Design, 8(7), p.2364 - 2376, 2008/07

 Times Cited Count:35 Percentile:89.88(Chemistry, Multidisciplinary)

Molecular and crystal structures of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(NRP)$$_{2}$$ (NRP = N-alkylated 2-pyrrolidone derivative) have been investigated by using single crystal X-ray analysis, IR and Raman spectroscopies. All UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(NRP)$$_{2}$$ complexes have typical structural properties of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(L)$$_{2}$$ (L = unidentate ligand), i.e., hexagonal-bipyramidal geometry, two NRP and two NO$$_{3}$$$$^{-}$$ located in trans positions in an equatorial plane of the uranyl ion. Observation of the crystals of the uranyl nitrate complexes with N-n-propyl-2-pyrrolidone and N-iso-propyl-2-pyrrolidone indicate the presence of significant voids in the crystal lattices of these compounds. From this result, an approach for construction of efficient packing of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$(NRP)$$_{2}$$ was proposed. Consequently, it was found that N-iso-butyl-2-pyrrolidone completely satisfies with the requirement for the efficient packing by filling the voids with the alkyl chain.

Journal Articles

Active tectonics of the Senya Hills and evolution of the Senya Active Fault, Eastern margin of the Yokote Basin Fault Zone, Northeast Japan

Kagohara, Kyoko*; Imaizumi, Toshifumi*; Miyauchi, Takahiro*; Sato, Hiroshi*; Uchida, Takuma*; Echigo, Tomoo*; Ishiyama, Tatsuya*; Matsuta, Nobuhisa*; Okada, Shinsuke*; Ikeda, Yasutaka*; et al.

Chigaku Zasshi, 115(6), p.691 - 714, 2006/12

The eastern marginal fault zone of the Yokote Basin is one of seismogenic reverse faults developed in Northeast Japan, generating the 1896 Riku-u Earthquake (M7.2). We discussed the relationship among fault traces, geomorphic displacements and fault geometries on the Senya fault, based on a data from high-resolution seismic reflection profiling, investigations in tectonic geomorphology and structural geology, with the help of the balanced cross section method. By the restoring the balanced cross sections, the horizontal shortening amount is estimated to be totally 3 km through the thrust system, and the thrusting is retroactive to 2.4 Ma. Depending on the strike of fault traces and the morphotectonic features, the Senya fault is subdivided into three, the northern, central and southern portion. The initiation of thrust front migration is ca.1.6 Ma at the central portion and 0.6 Ma at the northern portion. This means that the central portion preceded the northern portion as an emergent fault, and suggests that the initial propagated fault extends from the fault end to the boundary fault.

Oral presentation

Development of the radiation teaching materials with a precision phantom and glass dosimeters; Evaluation of dose distribution within the lung

Saito, Sumiko*; Urahashi, Kumiko*; Tange, Sachiko*; Kanoda, Hiromi*; Yamazaki, Kyoko*; Obara, Takao*; Kinase, Sakae

no journal, , 

no abstracts in English

Oral presentation

Development of advanced reprocessing system using high selective and controllable precipitants

Noda, Kyoko*; Takao, Koichiro*; Sugiyama, Yuichi*; Harada, Masayuki*; Nogami, Masanobu*; Maruyama, Koichi*; Takahashi, Hiroaki*; Kim, S.-Y.; Sato, Makoto; Mineo, Hideaki; et al.

no journal, , 

We have been developing an advanced reprocessing system for spent FBR fuels based on precipitation method using pyrrolidone derivatives. In previous investigation, N-cyclohexyl-2-pyrrolidone (NCP) is used as a precipitant, which is able to precipitate selectively UO$$_{2}$$$$^{2+}$$ ions in HNO$$_{3}$$ solution, and a process consisting of two separation steps; selective U precipitation step and U-Pu co-precipitation step, was developed. In order to make the process more effective and more economical, we are now studying precipitation of U and Pu with other pyrrolidone derivatives. The outline of the study and main results obtained until now are shown in this presentation.

Oral presentation

Development of the radiation teaching materials for nursing education

Saito, Sumiko*; Urahashi, Kumiko*; Kanoda, Hiromi*; Tange, Sachiko*; Yamazaki, Kyoko*; Obara, Takao*; Kinase, Sakae

no journal, , 

no abstracts in English

Oral presentation

Development of advanced reprocessing system based on precipitation method using high performance pyrrolidone derivatives, 3; Performance evaluation of pyrrolidone derivatives as UO$$_{2}$$$$^{2+}$$ -precipitant from a viewpoint of crystallography

Takao, Koichiro*; Noda, Kyoko*; Nogami, Masanobu*; Sugiyama, Yuichi*; Harada, Masayuki*; Ikeda, Yasuhisa*; Morita, Yasuji; Nishimura, Kenji*

no journal, , 

We have been developing an advanced reprocessing system for spent FBR fuels based on precipitation method using pyrrolidone derivatives. Structural analyses of UO$$_{2}$$(NO$$_{3}$$)$$_{2}$$L$$_{2}$$ (L=11 kinds of pyrrolidone derivatives) have been carried out using X-ray diffraction method to obtain some useful data for the selection of the optimum precipitant. It was found that the U(VI) complex with N-iso-butyl-2-pyrrolidone makes the most compact crystal.

Oral presentation

Development of advanced reprocessing system using high selective and controllable precipitants, 8; Co-precipitation behavior of U-Pu by novel precipitants with high hydrophobicity

Morita, Yasuji; Kim, S.-Y.; Kawata, Yoshihisa; Sato, Makoto; Ikeda, Yasuhisa*; Takao, Koichiro*; Noda, Kyoko*; Nishimura, Kenji*

no journal, , 

Precipitation behavior of Pu with pyrrolidone derivatives of N-(1,2-dimethyl)propyl-2-pyrrolidone (NDMProP) and N-neopenthyl-2-pyrrolidone (NNpP) in the solutions of U-Pu mixture has been examined in order to evaluate their applicability to the U-Pu co-precipitation process in the reprocessing based only on precipitation method. We have previously developed a process with N-cyclohexyl-2-pyrrolidone (NCP). It was found that U(VI) was precipitated in a high yield with any of the three precipitants and the precipitation yield of Pu(IV) was increased with the added amount of the precipitants. When NNpP was added with the ratio of [NNpP]/[U+Pu]=2.5, 99.5% of Pu was precipitate. Since NNpP showed the highest precipitation ability for Pu(IV) and the best physical property as precipitate, NNpP would be the most appropriate precipitant for the U-Pu co-precipitation process.

Oral presentation

Development of advanced reprocessing system using high selective and controllable precipitants, 7; Precipitation behavior of U(VI) by novel precipitants with high hydrophobicity and NCP

Takao, Koichiro*; Noda, Kyoko*; Nogami, Masanobu*; Sugiyama, Yuichi*; Harada, Masayuki*; Ikeda, Yasuhisa*; Morita, Yasuji; Nishimura, Kenji*

no journal, , 

Precipitation behavior of U(VI) and some fission products (FP) with pyrrolidone derivatives of N-(1,2-dimethyl)propyl-2-pyrrolidone (NDMProP) and N-neopenthyl-2-pyrrolidone (NNpP) in the solutions of U-FP mixture has been examined in order to evaluate their applicability to the U-Pu co-precipitation process in the reprocessing based only on precipitation method. We have previously developed a process with N-cyclohexyl-2-pyrrolidone (NCP). It was found that U(VI) was precipitated in a high yield with any of the three precipitants and the order of the precipitation ability for U(VI) was NCP$$>$$NNpP$$>$$NDMProP. Decontamination factors (DF) against FP except Zr(IV) and Mo(VI) in the U(VI) precipitation were over 100, and therefore NNpP and NDMProP can be used as an alternative precipitants to NCP.

Oral presentation

Development of advanced reprocessing system using high selective and controllable precipitants, 9; Investigation of stability of novel pyrrolidone precipitants against radiation and heat

Nogami, Masanobu*; Noda, Kyoko*; Takao, Koichiro*; Sugiyama, Yuichi*; Harada, Masayuki*; Ikeda, Yasuhisa*; Kawata, Yoshihisa; Morita, Yasuji; Nishimura, Kenji*

no journal, , 

We have been developing an advanced reprocessing system for spent FBR fuels based on precipitation method using pyrrolidone derivatives. The present study deals with durability of new precipitants with low and high hydrophobicity against $$gamma$$-irradiation and heating. Results showed that the precipitants with low hydrophobicity, N-n-butyl-2-pyrrolidone, N-propyl-2-pyrrolidone and N-iso-butyl-2-pyrrolidone, have enough durability against $$gamma$$-irradiation. The precipitants with high hydrophobicity, N-cyclohexyl-2-pyrrolidone, N-(1,2-dimethyl)propyl-2-pyrrolidone and N-neopenthyl-2-pyrrolidone, also have enough durability but gave lower precipitation yield when they irradiated with higher dose rate. The precipitation ability of all the precipitants did not changed by the heating at 50$$^{circ}$$C for three days.

Oral presentation

Development of advanced reprocessing system using high selective and controllable precipitants, 10; Investigation of precipitation properties of U(IV) in the presence of masking agents

Nogami, Masanobu*; Takao, Koichiro*; Sugiyama, Yuichi*; Noda, Kyoko*; Harada, Masayuki*; Ikeda, Yasuhisa*; Morita, Yasuji; Nishimura, Kenji*

no journal, , 

We have been developing an advanced reprocessing system for spent FBR fuels based on precipitation method using pyrrolidone derivatives. The present study deals with the effect of addition of masking agents on co-precipitation of Pu(IV) in the selective U(VI) precipitation. It was found that precipitation of U(IV), which was used as substitute for Pu(IV), was suppressed by the presence of acetohydoxamic acid.

Oral presentation

Development of advanced reprocessing system using high selective and controllable precipitants, 1; Overview of system and recent advances on precipitation behavior of uranyl ions

Nogami, Masanobu*; Kawasaki, Takeshi*; Takao, Koichiro*; Noda, Kyoko*; Sugiyama, Yuichi*; Harada, Masayuki*; Ikeda, Yasuhisa*; Morita, Yasuji; Chikazawa, Takahiro*; Kikuchi, Toshiaki*; et al.

no journal, , 

A reprocessing system for spent FBR fuels based on the two precipitation processes has been proposed. In this system, first only U(VI) species are precipitated using pyrrolidone derivatives (NRP) with low hydrophobicity and donicity, and secondly residual U(VI) and Pu(IV, VI) are precipitated simultaneously using pyrrolidone derivative with high precipitation ability. In order to develop such a reprocessing method, behavior of uranyl ions in HNO$$_{3}$$ has been studied using various novel NRP. In this presentation, recent advances on precipitation behavior and of uranyl ions and calcination of U(VI)-NRP will be introduced.

12 (Records 1-12 displayed on this page)
  • 1