Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples

Furuta, Takuya; Maeyama, Takuya*; Ishikawa, Kenichi*; Fukunishi, Nobuhisa*; Fukasaku, Kazuaki*; Takagi, Shu*; Noda, Shigeho*; Himeno, Ryutaro*; Hayashi, Shinichiro*

Physics in Medicine & Biology, 60(16), p.6531 - 6546, 2015/08

 Times Cited Count:16 Percentile:60.95(Engineering, Biomedical)

Low reproducibility of dose distribution in inhomogeneous regions such as soft matter near bones is known with the simple dose analysis currently adopted in treatment planning of particle cancer therapy. Therefore a treatment planning system based on Monte Carlo simulation having better accuracy is highly desired. In order to assess the simulation accuracy of a Monte Carlo simulation code in situations closely related to medical application, we performed a comparison of dose distribution in a biological sample obtained by experiment and that by simulation. In particular, we irradiate a carbon beam on a biological sample composed of fresh chicken meat and bones, with a PAGAT gel dosimeter placed behind it, and compare the complex dose distribution in the gel dosimeter created by the beam passing through the inhomogeneous sample. Monte Carlo simulation using PHITS code was conducted by reconstructing the biological sample from its computed tomography images. The simulation accurately reproduced the experimental distal edge structure of the dose distribution with an accuracy under about 2 mm.

Journal Articles

Parallel computing with Particle and Heavy Ion Transport code System (PHITS)

Furuta, Takuya; Sato, Tatsuhiko; Ogawa, Tatsuhiko; Niita, Koji*; Ishikawa, Kenichi*; Noda, Shigeho*; Takagi, Shu*; Maeyama, Takuya*; Fukunishi, Nobuhisa*; Fukasaku, Kazuaki*; et al.

Proceedings of Joint International Conference on Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method (M&C + SNA + MC 2015) (CD-ROM), 9 Pages, 2015/04

In Particle and Heavy Ion Transport code System PHITS, two parallel computing functions are prepared to reduce the computational time. One is the distributed-memory parallelization using message passing interface (MPI) and the other is the shared-memory parallelization using OpenMP directives. Each function has advantages and disadvantages, and thus, by adopting both functions in PHITS, it is possible to conduct parallel computing suited for needs of users. It is also possible to conduct the hybrid parallelization by the intra-node OpenMP parallelization and the inter-node MPI parallelization in supercomputer systems. Each parallelization functions were explained together with some application results obtained using a workstation and a supercomputer system, K computer at RIKEN.

Journal Articles

Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation

Maeyama, Takuya*; Fukunishi, Nobuhisa*; Ishikawa, Kenichi*; Furuta, Takuya; Fukasaku, Kazuaki*; Takagi, Shu*; Noda, Shigeho*; Himeno, Ryutaro*; Fukuda, Shigekazu*

Radiation Physics and Chemistry, 107, p.7 - 11, 2015/02

 Times Cited Count:10 Percentile:67.6(Chemistry, Physical)

We study the radiological characteristics of VIP polymer gel dosimeters under carbon beam irradiation with energy of 135 and 290 AMeV. To evaluate dose response of VIP polymer gels, the transverse relaxation rate R2 of the dosimeters measured by magnetic resonance imaging (MRI) as a function of linear energy transfer (LET), rather than penetration depth, as is usually done in previous reports. LET is evaluated by use of the particle transport simulation code PHITS. Our results reveal that the dose response decreases with increasing dose-averaged LET and that the response-LET relation also varies with incident carbon beam energy. The latter can be explained by taking into account the contribution from fragmentation products. Furthermore, as an application of the evaluated response-LET relation, we compare the measured and simulated R2 distribution in a VIP gel formed by heterogeneous irradiation and obtain agreement in overall distribution and range within an accuracy of 5% and 1-2 mm, respectively.

3 (Records 1-3 displayed on this page)
  • 1