Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 94

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Reliability improvements of corrosion-resistant equipment for thermochemical water splitting hydrogen production iodine-sulfur process

Kamiji, Yu; Noguchi, Hiroki; Takegami, Hiroaki; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

Nuclear Engineering and Design, 361, p.110573_1 - 110573_6, 2020/05

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

JAEA has been conducting R&D on the thermochemical iodine-sulfur (IS) process for nuclear-powered hydrogen production. The IS process is one of the promising candidates of heat application of the high-temperature gas-cooled reactors. The glass-lined steel is one of the candidate materials which has both corrosion resistance and structural strength. This paper reveals technical matters to improve reliability of the glass-lined steel equipment. It found that the improved glass-lined steel showed soundness in the process environment from the results of stress analyses for the glass layer by FEM, tests for heat cycle, bending load and corrosion.

Journal Articles

Development of strength evaluation method of ceramic reactor for iodine-sulfur process and hydrogen production test in Japan Atomic Energy Agency

Takegami, Hiroaki; Noguchi, Hiroki; Tanaka, Nobuyuki; Iwatsuki, Jin; Kamiji, Yu; Kasahara, Seiji; Imai, Yoshiyuki; Terada, Atsuhiko; Kubo, Shinji

Nuclear Engineering and Design, 360, p.110498_1 - 110498_6, 2020/04

 Times Cited Count:1 Percentile:24.17(Nuclear Science & Technology)

Japan Atomic Energy Agency (JAEA) has been conducting R&D on the thermochemical iodine-sulfur (IS) process for nuclear-powered hydrogen production. The IS process is one of the promising candidates of heat application of the high-temperature gas-cooled reactors. JAEA fabricated main chemical reactors made of industrial structural materials and confirmed their integrity in practical corrosive environments in the IS process. Based on the results of these confirmation tests, JAEA have constructed a 100 NL/h-H$$_{2}$$-scale test facility made of industrial structural materials. In this report, we succeeded in extending the hydrogen production time from 8 hours to 31 hours by developing a stable hydrogen iodide solution transfer technology in a continuous hydrogen production test. In addition, using the fracture test data of the ceramic specimen, an equation for estimating the strength of the ceramic component was developed.

Journal Articles

Research and development on membrane IS process for hydrogen production using solar heat

Myagmarjav, O.; Iwatsuki, Jin; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ioka, Ikuo; Kubo, Shinji; Nomura, Mikihiro*; Yamaki, Tetsuya*; Sawada, Shinichi*; et al.

International Journal of Hydrogen Energy, 44(35), p.19141 - 19152, 2019/07

 Times Cited Count:6 Percentile:32.44(Chemistry, Physical)

Journal Articles

Local structure analysis of PbTiO$$_3$$ in high-temperature cubic phase

Yoneda, Yasuhiro; Taniguchi, Hiroki*; Kitanaka, Yuki*; Noguchi, Yuji*

Ferroelectrics, 538(1), p.57 - 62, 2019/05

 Times Cited Count:2 Percentile:77.71(Materials Science, Multidisciplinary)

High-energy X-ray diffraction study was performed on lead titanate (PbTiO$$_3$$). Short-range order structure was revealed using atomic pair-distribution function (PDF) method. In the high-temperature cubic phase, there is a large deviation between local and average structure. Especially, Pb atoms deviated from the cubic lattice framework, but establish Pb-O-Pb random network.

Journal Articles

R&D status of hydrogen production test using IS process test facility made of industrial structural material in JAEA

Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

International Journal of Hydrogen Energy, 44(25), p.12583 - 12592, 2019/05

 Times Cited Count:1 Percentile:84.47(Chemistry, Physical)

JAEA has been conducting R&D on thermochemical water-splitting hydrogen production IS process to develop one of heat applications of high-temperature gas-cooled reactor. A test facility was constructed using corrosion-resistant industrial materials to verify integrity of the IS process components and to demonstrate continuous and stable hydrogen production. The performance of components installed in each section was confirmed. Subsequently, a trial operation of integration of the processing sections was successfully carried out for 8 hours with hydrogen production rate of approximately 10 NL/h. After that, hydrogen production operation was extended to 31 hours (approximately hydrogen production rate of 20 NL/h) by introducing a corrosion-resistance pump system with a developed shaft seal technology.

Journal Articles

Current R&D status of thermochemical water splitting hydrogen production iodine-sulfur process in Japan Atomic Energy Agency, 1; Hydrogen production test and component development

Takegami, Hiroaki; Noguchi, Hiroki; Tanaka, Nobuyuki; Iwatsuki, Jin; Kamiji, Yu; Kasahara, Seiji; Imai, Yoshiyuki; Terada, Atsuhiko; Kubo, Shinji

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

Japan Atomic Energy Agency (JAEA) has been conducting R&D on the thermochemical iodine-sulfur (IS) process for nuclear-powered hydrogen production. The IS process is one of the promising candidates of heat application of the high-temperature gas-cooled reactors. JAEA fabricated main chemical reactors made of industrial structural materials and confirmed their integrity in practical corrosive environments in the IS process. Based on the results of these confirmation tests, JAEA have constructed a 100 NL/h-H$$_{2}$$-scale test facility made of industrial structural materials. This report will present an outline and results of hydrogen production tests and reliability improvements of operation stability and components, such as development of a strength estimation method for heat-resistant and corrosion-resistant ceramics components made of silicon carbide.

Journal Articles

Current R&D status of thermochemical water splitting hydrogen production iodine-sulfur process in Japan Atomic Energy Agency, 2; Reliability improvements of corrosion-resistant equipment

Kamiji, Yu; Noguchi, Hiroki; Takegami, Hiroaki; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10

Japan Atomic Energy Agency (JAEA) has been conducting R&D on the thermochemical iodine-sulfur (IS) process for nuclear-powered hydrogen production. The IS process is one of the promising candidates of heat application of the HTGR. JAEA achieved continuous hydrogen production for one week with a hydrogen production rate of 30 NL/h by using a test apparatus made of glass and fluororesin material. Subsequently, JAEA fabricated main chemical reactors made of industrial materials and confirmed their integrity in corrosive environments in the IS process. Based on the results, JAEA has constructed a 100 NL/h-H$$_{2}$$-scale test facility made of industrial materials; one of the important materials is the glass-lined steel for corrosion resistant components such as vessels, pipes and protective sheaths of sensors. This report will present technical matters to improve reliability of the glass-lined protective sheaths of thermocouple. In addition, results of quality confirmation will be presented, which are stress analyses for the glass layer by FEM, tests for heat cycle, bending load and corrosion.

Journal Articles

R&D status in thermochemical water-splitting hydrogen production iodine-sulfur process at JAEA

Noguchi, Hiroki; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kubo, Shinji

Energy Procedia, 131, p.113 - 118, 2017/12

 Times Cited Count:9 Percentile:0.22

The IS process is the most deeply investigated thermochemical water-splitting hydrogen production cycle. It is in a process engineering stage in JAEA to use industrial materials for components. Important engineering tasks are verification of integrity of the total process and stability of hydrogen production in harsh environment. A test facility using corrosion-resistant materials was constructed. The hydrogen production ability was 100 L/h. Operation tests of each section were conducted to confirm basic functions of reactors and separators, etc. Then, a trial operation for integration of the sections was successfully conducted to produce hydrogen of about 10 L/h for 8 hours.

Journal Articles

Current R&D status of thermochemical water splitting iodine-sulfur process in Japan Atomic Energy Agency

Kasahara, Seiji; Iwatsuki, Jin; Takegami, Hiroaki; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Onuki, Kaoru; Kubo, Shinji

International Journal of Hydrogen Energy, 42(19), p.13477 - 13485, 2017/05

 Times Cited Count:25 Percentile:19.73(Chemistry, Physical)

Current R&D on the thermochemical water splitting iodine-sulfur (IS) process in Japan Atomic Energy Agency is summarized. Reactors were fabricated with industrial materials and verified by test operations: a Bunsen reactor, a H$$_{2}$$SO$$_{2}$$ decomposer, and a HI decomposer. Reactors of industrial materials showed corrosion stability. Demonstration of the test facility verified integrity of process components and stability of hydrogen production. An 8 hours continuous operation of the total IS process was performed in February 2016 with H$$_{2}$$ production rate of 10 L/h.

Journal Articles

IS process hydrogen production test for components and system made of industrial structural material, 2; H$$_{2}$$SO$$_{4}$$ decomposition, HI distillation, and HI decomposition section

Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1029 - 1038, 2016/11

JAEA has been conducting R&D on the IS process for nuclear-powered hydrogen production. We have constructed a 100 NL/h-H$$_2$$-scale test apparatus made of industrial materials. At first, we investigated performance of components in this apparatus. In this paper, the test results of H$$_2$$SO$$_4$$ decomposition, HI distillation, and HI decomposition were shown. In the H$$_2$$SO$$_4$$ section, O$$_2$$ production rate is proportional to H$$_2$$SO$$_4$$ feed rate and SO$$_3$$ decomposition ratio was estimated about 80%. In HI distillation section, we confirmed to acquire a concentrated HI solution over azeotropic HI composition in the condenser. In HI decomposition section, H$$_2$$ could be produced stably by HI decomposer and decomposition ratio was about 18%. The H$$_2$$SO$$_4$$ decomposer, the HI distillation column, and the HI decomposer were workable. Based on the results added to that shown in Series I, we conducted a trial continuous operation and succeeded it for 8 hours.

Journal Articles

IS process hydrogen production test for components and system made of industrial structural material, 1; Bunsen and HI concentration section

Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kasahara, Seiji; Kubo, Shinji

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1022 - 1028, 2016/11

Japan Atomic Energy Agency (JAEA) has manufactured 100 NL/h-H$$_2$$-scale hydrogen test apparatus. In advance to conduct the continuous operation, we investigated performance of the components in each section of the IS process. In this paper, the results of test of Bunsen and HI concentration sections was shown. In Bunsen reaction, section, we confirmed that outlet gas flow rate included no SO$$_{2}$$ gas, indicating that all the feed SO$$_{2}$$ gas was absorbed to the solution in the Bunsen reactor for the Bunsen reaction. On the basis of these results, we evaluated that Bunsen reactor was workable. In HI concentration section, HI concentration was conducted by EED stack. As a result, it can concentrate HI in HIx solution as theoretically predicted on the basis of the previous paper. Based on the results added to that shown in Series II, we have conducted a trial continuous operation and succeeded it for 8 hours.

JAEA Reports

Research and development on chemical reactors made of industrial structural materials and hydriodic acid concentration technique for thermochemical hydrogen production IS process

Kubo, Shinji; Iwatsuki, Jin; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Onuki, Kaoru

JAEA-Technology 2015-028, 32 Pages, 2015/10

JAEA-Technology-2015-028.pdf:23.69MB

JAEA has been conducting a study on IS process for thermochemical hydrogen production in order to develop massive hydrogen production technology for hydrogen society. Integrity of the chemical reactors and concentration technology of hydrogen iodide in HIx solution were studied. In the former study, the chemical reactors were trial-fabricated using industrial materials. A test of 30 times of thermal cycle test under circulating condition of the Bunsen reaction solution showed integrity of the Bunsen reactor made of fluororesin lined steel. Also, 100 hours of reaction tests showed integrity of the sulfuric acid decomposer made of silicon carbide and of the hydrogen iodide decomposer made of Hastelloy C-276. In the latter study, concerning electro-electrodialysis using cation-exchange membrane, sulfuric acid in the anolyte had little influence on the concentration performance. These results suggest the purification system of HIx solution can be simplified. Based on the Nernst-Planck equation and the Smoluchowski equation, proton transport number, water permeance, and IR drop of the cation exchange membrane were formulated. The derived equations enable quantitative estimation for the performance indexes of Nafion membrane and, also, of ETFE-St membranes made by radiation-induced graft polymerization method.

Journal Articles

Thermochemical decomposition of water

Onuki, Kaoru; Noguchi, Hiroki; Tanaka, Nobuyuki; Takegami, Hiroaki; Kubo, Shinji

Hyomen Kagaku, 36(2), p.80 - 85, 2015/02

Thermochemical water-splitting process decomposes water using thermal energy by operating high temperature endothermic reaction(s) and low temperature exothermic reaction(s) cyclically, with which free energy of water decomposition is produced. The so-called sulfur family processes, which utilize thermal decomposition of sulfuric acid as the high temperature endothermic reaction, have attracted lots of interest among the many processes proposed so far. The IS process represents the pure thermochemical sulfur family processes. The continuous hydrogen production by IS process was demonstrated in laboratory, and the materials of construction for the IS process have been screened by corrosion tests performed in the severe process environment. At present, application of membrane technologies and development of catalysts are under study to improve the hydrogen production performance. Also, development is underway of the chemical reactors made of candidate materials such as ceramics.

Journal Articles

Boiling heat transfer characteristics of a sulfuric-acid flow in thermochemical iodine-sulfur cycle

Noguchi, Hiroki; Terada, Atsuhiko; Onuki, Kaoru; Hino, Ryutaro

Chemical Engineering Research & Design, 92(9), p.1659 - 1663, 2014/09

 Times Cited Count:3 Percentile:87.87(Engineering, Chemical)

The Japan Atomic Energy Agency has been conducting research and development on the thermo-chemical iodine-sulfur (IS) process, which is one of the most attractive water-splitting hydrogen production methods that uses nuclear thermal energy. The sulfuric acid decomposer is one of the key components of the IS process. The boiling heat transfer coefficients of sulfuric acid solutions are required to design the sulfuric acid decomposer. These coefficients were measured in aqueous solutions where the mole fraction of H$$_{2}$$O ranged from 0.17 to 0.37 (heat flux range from 16.9 kW/m$$^{2}$$ to 5.6 kW/m$$^{2}$$) and compared with the empirical correlations formulated for binary mixtures. A combination of the Stephan-K$"o$rner correlation, using the empirical constant A$$_{0}$$ = 2.00, and the Nishikawa-Fujita correlation was used to predict the experimental results with an accuracy of 10%.

Journal Articles

Flowsheet study of a multistage flash desalination system for cogeneration with high temperature gas-cooled reactor

Kamiji, Yu; Noguchi, Hiroki; Terada, Atsuhiko; Yan, X.

Proceedings of 22nd International Conference on Nuclear Engineering (ICONE-22) (DVD-ROM), 5 Pages, 2014/07

HTGR produces not only electricity but high temperature heat for heat application systems. In the Middle East countries, large demand exists for cogeneration of water and electricity from desalination plant with power station. Desalination with an HTGR gas turbine system can efficiently meet this demand because such system can produce pure water from using only the waste heat. The waste heat of up to 248MWt is available for desalination. In this paper, heat and mass balance was calculated for a new concept of desalination system which is shown to increase use of waste heat by incrementing the number of thermal loading steps at the heat recovery section. The calculation was performed at steady water production condition to clarify the optimum steps of incremental loading. As a result, it was found that heat transfer area of heat recovery section in case of 3 BHs was 28% smaller than that of 2BHs.

Journal Articles

Integrity test on ceramics sulfuric acid decomposer in thermochemical iodine-sulfur process

Noguchi, Hiroki; Kubo, Shinji; Iwatsuki, Jin; Tanaka, Nobuyuki; Kasahara, Seiji; Takegami, Hiroaki

Proceedings of 20th World Hydrogen Energy Conference (WHEC 2014) (USB Flash Drive), 5 Pages, 2014/06

The Japan Atomic Energy Agency (JAEA) has been conducting research and development on the thermochemical iodine sulfur (IS) process for nuclear powered hydrogen production. The process directly uses the heat produced by HTGR. One of important engineering tasks is confirming integrity of components made of industrial materials in high temperature and severe corrosive environments of IS process. A sulfuric acid decomposer, a key component in the sulfuric acid processing (vaporization and decomposition reaction), was test fabricated from SiC ceramics and glass lined steel. The decomposer would be designed equivalent of hydrogen production rate of 150 NL/h. A test apparatus has been assembled to examine the decomposer for reaction performances and long term corrosion resistance under the practical condition of the sulfuric acid processing. This report will present brief of the test apparatus and current status of the integrity test.

Journal Articles

Components development for sulfuric acid processing in the IS process

Noguchi, Hiroki; Kubo, Shinji; Iwatsuki, Jin; Kasahara, Seiji; Tanaka, Nobuyuki; Imai, Yoshiyuki; Terada, Atsuhiko; Takegami, Hiroaki; Kamiji, Yu; Onuki, Kaoru; et al.

Nuclear Engineering and Design, 271, p.201 - 205, 2014/05

 Times Cited Count:6 Percentile:51.92(Nuclear Science & Technology)

The Japan Atomic Energy Agency has been conducting research and development on a thermochemical iodine-sulfur (IS) process. An examination is planned to verify the integrity of the components in the sulfuric acid decomposition section. A bayonet-type sulfuric acid decomposer made of SiC ceramics, a key component in the section, was test-fabricated. In parallel, a direct-contact heat exchanger (DCHX) is contemplated for use in the sulfuric acid decomposition section to simplify the process. Although the concept is very attractive, little is known about the heat and mass transfer behavior in the DCHX. Therefore, a test apparatus was constructed to measure the gas-phase mass transfer coefficients required for the optimal design of the DCHX. These coefficients of water were acquired and compared with an empirical correlation. The experimental data were in good agreement with those obtained from empirical correlation, and thus, the apparatus was confirmed to be reasonable.

JAEA Reports

Development of non-destructive inspection method for on-site observation; Preliminary examination for internal visualization of HTTR

Takegami, Hiroaki; Terada, Atsuhiko; Noguchi, Hiroki; Kamiji, Yu; Ono, Masato; Takamatsu, Kuniyoshi; Ito, Chikara; Hino, Ryutaro; Suzuki, Keiichi*; Onuma, Hiroshi*; et al.

JAEA-Research 2013-032, 25 Pages, 2013/12

JAEA-Research-2013-032.pdf:3.56MB

We focused on a non-destructive inspection method using cosmic-ray muons as a candidate method for observation of internal the reactor from the outside of a reactor building. In this study, the applicability of this method for the reactor investigation was confirmed by a preliminary examination with High Temperature Engineering Test Reactor (HTTR). From the results of this examination, it appears that high density structures, such as the core and concrete walls, were able to observe by using muon telescope with coincidence method from the outside of the pressure vessel. Furthermore, we proposed some improvements of this muon inspection system for on-site investigation at the Fukushima Daiichi NPS.

Journal Articles

Study of an incrementally loaded multistage flash desalination system for optimum use of sensible waste heat from nuclear power plant

Yan, X.; Noguchi, Hiroki; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Hino, Ryutaro

International Journal of Energy Research, 37(14), p.1811 - 1820, 2013/11

 Times Cited Count:12 Percentile:23.23(Energy & Fuels)

Existing nuclear desalination cogeneration incurs loss of nuclear plant power generation. Such loss is avoided with the plant design GTHTR300 proposed in the present study. The plant is based on a HTGR. Gas turbine is used to replace steam turbine as power generator. The gas turbine converts about a half of the reactor thermal power to electricity while rejecting the balance as sensible waste heat to be utilized in a MSF plant for desalination. A new MSF is proposed to efficiently match the sensible waste heat source. Although operating with a similar number of stages to traditional process, the new process is shown to produce 45% more water over the same temperature range.

JAEA Reports

Conceptual design of small-sized HTGR system, 4; Plant design and technical feasibility

Ohashi, Hirofumi; Sato, Hiroyuki; Yan, X.; Sumita, Junya; Nomoto, Yasunobu; Tazawa, Yujiro; Noguchi, Hiroki; Imai, Yoshiyuki; Tachibana, Yukio

JAEA-Technology 2013-016, 176 Pages, 2013/09

JAEA-Technology-2013-016.pdf:8.62MB

JAEA has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine. The plant design of HTR50S for the steam supply and electricity generation was performed based on the plant specification and the requirements for each system taking into account for the increase of the reactor outlet coolant temperature from 750$$^{circ}$$C to 900$$^{circ}$$C and the installation of IHX. The technical feasibility of HTR50S was confirmed because the designed systems satisfies the design requirements. The conceptual plant layout was also determined. This paper provides the summary of the plan design and technical feasibility of HTR50S.

94 (Records 1-20 displayed on this page)