Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Non-destructive analysis of samples with a complex geometry by NRTA

Ma, F.; Kopecky, S.*; Alaerts, G.*; Harada, Hideo; Heyse, J.*; Kitatani, Fumito; Noguere, G.*; Paradela, C.*; $v{S}$alamon, L.*; Schillebeeckx, P.*; et al.

Journal of Analytical Atomic Spectrometry, 35(3), p.478 - 488, 2020/03

 Times Cited Count:0 Percentile:100(Chemistry, Analytical)

Journal Articles

CIELO collaboration summary results; International evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen

Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Kahler, A. C.*; Talou, P.*; Plompen, A. J.*; Schillebeeckx, P.*; et al.

Nuclear Data Sheets, 148, p.189 - 213, 2018/02

 Times Cited Count:22 Percentile:3.55(Physics, Nuclear)

The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear facilities - $$^{235}$$U, $$^{238}$$U, $$^{239}$$Pu, $$^{56}$$Fe, $$^{16}$$O and $$^{1}$$H - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality. This report summarizes our results and outlines plans for the next phase of this collaboration.

Journal Articles

Improving nuclear data accuracy of $$^{241}$$ Am and $$^{237}$$ Np capture cross sections

$v{Z}$erovnik, G.*; Schillebeeckx, P.*; Cano-Ott, D.*; Jandel, M.*; Hori, Junichi*; Kimura, Atsushi; Rossbach, M.*; Letourneau, A.*; Noguere, G.*; Leconte, P.*; et al.

EPJ Web of Conferences, 146, p.11035_1 - 11035_4, 2017/09

 Times Cited Count:4 Percentile:2.78

Journal Articles

The CIELO collaboration; Progress in international evaluations of neutron reactions on Oxygen, Iron, Uranium and Plutonium

Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Kahler, A. C.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Pigni, M.*; Dunn, M.*; Leal, L.*; et al.

EPJ Web of Conferences, 146, p.02001_1 - 02001_9, 2017/09

 Times Cited Count:5 Percentile:1.55

The CIELO collaboration has studied neutron cross sections on nuclides ($$^{16}$$O, $$^{56}$$Fe, $$^{235,238}$$U and $$^{239}$$Pu) that significantly impact criticality in nuclear technologies with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality.

Journal Articles

The CIELO Collaboration; Neutron reactions on $$^1$$H, $$^{16}$$O, $$^{56}$$Fe, $$^{235,238}$$U, and $$^{239}$$Pu

Chadwick, M. B.*; Dupont, E.*; Bauge, E.*; Blokhin, A.*; Bouland, O.*; Brown, D. A.*; Capote, R.*; Carlson, A. D.*; Danon, Y.*; De Saint Jean, C.*; et al.

Nuclear Data Sheets, 118, p.1 - 25, 2014/04

 Times Cited Count:90 Percentile:1.18(Physics, Nuclear)

CIELO (Collaborative International Evaluated Library Organization) provides a new working paradigm to facilitate evaluated nuclear reaction data advances. It brings together experts from across the international nuclear reaction data community to identify and document discrepancies among existing evaluated data libraries, measured data, and model calculation interpretations, and aims to make progress in reconciling these discrepancies to create more accurate ENDF-formatted files. The focus will initially be on a small number of the highest-priority isotopes, namely $$^{1}$$H, $$^{16}$$O, $$^{56}$$Fe, $$^{235,238}$$U, and $$^{239}$$Pu. This paper identifies discrepancies between various evaluations of the highest priority isotopes. The evaluated data for these materials in the existing nuclear data libraries are reviewed, and some integral properties are given. The paper summarizes a program of nuclear science and computational work needed to create the new CIELO nuclear data evaluations.

5 (Records 1-5 displayed on this page)
  • 1