Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Naito, Fujio*; Anami, Shozo*; Ikegami, Kiyoshi*; Uota, Masahiko*; Ouchi, Toshikatsu*; Onishi, Takahiro*; Oba, Toshiyuki*; Obina, Takashi*; Kawamura, Masato*; Kumada, Hiroaki*; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1244 - 1246, 2016/11
The proton linac installed in the Ibaraki Neutron Medical Research Center is used for production of the intense neutron flux for the Boron Neutron Capture Therapy (BNCT). The linac consists of the 3-MeV RFQ and the 8-MeV DTL. Design average beam current is 10mA. Target is made of Beryllium. First neutron production from the Beryllium target was observed at the end of 2015 with the low intensity beam as a demonstration. After the observation of neutron production, a lot of improvement s was carried out in order to increase the proton beam intensity for the real beam commissioning. The beam commissioning has been started on May 2016. The status of the commissioning is summarized in this report.
Nishimori, Nobuyuki; Nagai, Ryoji; Mori, Michiaki; Hajima, Ryoichi; Yamamoto, Masahiro*; Honda, Yosuke*; Miyajima, Tsukasa*; Uchiyama, Takashi*; Jin, X.*; Obina, Takashi*; et al.
Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.511 - 515, 2015/09
no abstracts in English
Hwang, J.-G.*; Kim, E.-S.*; Miyajima, Tsukasa*; Honda, Yosuke*; Harada, Kentaro*; Shimada, Miho*; Takai, Ryota*; Kume, Tatsuya*; Nagahashi, Shinya*; Obina, Takashi*; et al.
Nuclear Instruments and Methods in Physics Research A, 753, p.97 - 104, 2014/07
Times Cited Count:7 Percentile:46.64(Instruments & Instrumentation)Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.
Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05
Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.
Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.
Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06
Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.
Nishimori, Nobuyuki; Hajima, Ryoichi; Nagai, Ryoji; Honda, Yosuke*; Jin, X.*; Miyajima, Tsukasa*; Obina, Takashi*; Uchiyama, Takashi*; Yamamoto, Masahiro*; Kuriki, Masao*
no journal, ,