Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2023)

Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Fujita, Natsuko; Yokoyama, Tatsunori; Ogita, Yasuhiro; Fukuda, Shoma; Nakajima, Toru; Kagami, Saya; Ogata, Manabu; et al.

JAEA-Review 2023-017, 27 Pages, 2023/10

JAEA-Review-2023-017.pdf:0.94MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2023. The objectives and contents in fiscal year 2023 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2022

Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Ishihara, Takanori; Ogawa, Hiroki; Hakoiwa, Hiroaki; Watanabe, Tsuyoshi; Nishiyama, Nariaki; Yokoyama, Tatsunori; Ogata, Manabu; et al.

JAEA-Research 2023-005, 78 Pages, 2023/10

JAEA-Research-2023-005.pdf:6.51MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year of the Japan Atomic Energy Agency 4th Medium- and Long-term Plan (fiscal years 2022-2028) to provide the scientific base for assessing geosphere stability for long-term isolation of high-level radioactive waste. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2022)

Sasao, Eiji; Ishimaru, Tsuneari; Niwa, Masakazu; Shimada, Akiomi; Shimada, Koji; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; Ogita, Yasuhiro; et al.

JAEA-Review 2022-022, 29 Pages, 2022/09

JAEA-Review-2022-022.pdf:0.97MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2022. The objectives and contents in fiscal year 2022 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2020

Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Niwa, Masakazu; Shimada, Akiomi; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; et al.

JAEA-Research 2021-007, 65 Pages, 2021/10

JAEA-Research-2021-007.pdf:4.21MB

This annual report documents the progress of research and development (R&D) in the 6th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2021)

Ishimaru, Tsuneari; Kokubu, Yoko; Shimada, Koji; Shimada, Akiomi; Niwa, Masakazu; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; Ogita, Yasuhiro; et al.

JAEA-Review 2021-012, 48 Pages, 2021/08

JAEA-Review-2021-012.pdf:1.64MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2021. The objectives and contents in fiscal year 2021 are described in detail based on the JAEA 3rd Medium- and Long-term Plan (fiscal years 2015-2021). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Design of fuel transient test facility system

Hosokawa, Jinsaku; Iimura, Koichi; Ogawa, Mitsuhiro; Tomita, Kenji; Yamaura, Takayuki

JAEA-Technology 2010-018, 269 Pages, 2010/08

JAEA-Technology-2010-018.pdf:5.75MB

At Oarai Research and Development Center, Japan Atomic Energy Agency (JAEA) advances the plan of refurbishing Japan Materials Testing Reactor (JMTR) to start the operation in fiscal 2011. Fuel Transient Test Facility is scheduled to be set up as neutron irradiation test equipment of the light-water reactor fuel that uses JMTR after it operates again. The abnormal transition examination device is the irradiation facilities where the output sudden rise examination that makes the light-water reactor fuel an irradiation sample is done to use it to develop the safety evaluation technology and the damage influence evaluation technology of the light-water reactor fuel that reaches high burn-up. In this report, as for the system design, it is a summary to JMTR among detailed designs of the abnormal transition examination device of the installation schedule.

JAEA Reports

Design examination of the high-duty irradiation loop

Ogawa, Mitsuhiro; Iimura, Koichi; Hosokawa, Jinsaku; Kanno, Masaru

JAEA-Technology 2010-019, 178 Pages, 2010/07

JAEA-Technology-2010-019.pdf:20.16MB

JMTR is making preparations of the irradiation examinations towards the re-operation from the 2011 fiscal year now. Design examination of the high-duty irradiation loop is in one of these irradiation examinations of the irradiation plan. The examination is the plan to carry out the irradiation examination of the light water reactor fuel (uranium fuel and mixed oxide fuel) which reached the high burnup, under the irradiation environment nearer to the light water reactor plant. In the 2009 fiscal year, we carried out (1) System design and (2) Earthquake-proof calculation of in-pile tube of the high-duty irradiation loop. And, for the fuel action between covering pipe and pellets of fuel rod which reached the high burnup, we carried out (3) System design of the lift-off test facility. Moreover, we carried out (4) Examination about detection system of fuel breakage when a fuel sample is damaged, and (5) Examination about system composition of effluent treatment system.

JAEA Reports

Seismic analysis for shroud facility in-pile tube and saturated temperature capsules

Iimura, Koichi; Yamaura, Takayuki; Ogawa, Mitsuhiro

JAEA-Technology 2009-033, 45 Pages, 2009/07

JAEA-Technology-2009-033.pdf:5.01MB

At Oarai Research and development center, Japan Atomic Energy Agency (JAEA), the plan of repairing and refurbishing Japan Materials Testing Reactor (JMTR) has progressed in order to restart JMTR operation in the fiscal 2011. By using Oarari Shroud Facility and fuel irradiation facility with the He-3 gas control system for power lamping test using boiling water capsules. By using saturated temperature capsules and the water environment control system, the material irradiation tests under the water chemistry condition of LWL will be carried out to clarify the mechanism of IASCC. The detailed design for renewal or remodeling was carried out based on the new design condition in order to be correspondent to the irradiation test plan after restart JMTR operation. Stress calculation and evaluation were carried out by fem piping analysis code SAP and structure analysis code ABAQUS. It was proven by the analysis that these facilities maintain the structural integrity under earthquake condition.

JAEA Reports

Numerical analysis on thermal-hydraulic behavior in natural convection capsules

Inaba, Yoshitomo; Ogawa, Mitsuhiro; Yamaura, Takayuki; Tobita, Masahiro

JAEA-Technology 2009-032, 51 Pages, 2009/07

JAEA-Technology-2009-032.pdf:8.74MB

The fuel transient tests for light water reactors are to be carried out in the Japan Materials Testing Reactor (JMTR), and the capsule-type test facilities (fuel transient test capsules) are to be used in the tests. In order to investigate the thermal-hydraulic behavior in the capsules, the multi-dimensional two-fluid model code ACE-3D is used. At first, the functions of ACE-3D were expanded for the pre-process and the post-process. Then, the BWR power calibration test capsule, which had been tested in JMTR, was modeled, and the BWR power calibration tests were simulated numerically for the verification of ACE-3D. The numerical results agreed well with the test data. As a result, it was found that ACE-3D is applicable to the numerical simulation of the fuel transient tests. In addition, the fuel transient tests with a natural convection capsule were simulated numerically with ACE-3D, and the thermal-hydraulic behavior in the capsule was investigated.

JAEA Reports

Dose evaluation for fuel transient test

Iimura, Koichi; Ogawa, Mitsuhiro; Tomita, Kenji; Tobita, Masahiro

JAEA-Technology 2009-021, 71 Pages, 2009/05

JAEA-Technology-2009-021.pdf:4.34MB

The preparation of a fuel transient test using the JMTR is advanced to conduct its irradiation test from 2011 F.Y. after re-operation of the JMTR. The fuel behavior for high burn-up BWR's under power ramping condition will be evaluated in simulating the BWR environmental condition using the shroud irradiation facility (Oarai Shroud Facility No.1) and $$^{3}$$He power-control type BOCA (Boiling Water Capsule) irradiation facility, which is composed of the capsule control device, $$^{3}$$He power-control device and boiling water capsule. In order to change the fuel irradiation conditions so as to treat high burn-up fuels (from 50 GWD/t-UO$$_{2}$$ to 110 GWD/t-U), it is necessary to revaluate the dose for the safety evaluation at the test fuel failure. In this report, evaluations for equivalent dose rate of each device and exposure dose of handling operators when all fission products released in the coolant of the capsule control device and the BOCA at fuel failure in the fuel transient test are summarized.

JAEA Reports

Dose evaluation of external exposure by direct and skyshine gamma rays of nuclear fuel handling facilities at JMTR

Ogawa, Mitsuhiro; Iimura, Koichi; Tomita, Kenji; Tobita, Masahiro

JAEA-Technology 2009-017, 254 Pages, 2009/05

JAEA-Technology-2009-017.pdf:15.04MB

In JMTR, upgrade of irradiation facilities is advanced to re-operate from 2011 F.Y. In order to irradiate test fuels of high-burnup, external exposure reassessment by direct and skyshine gamma rays of the nuclear fuel handling facility at JMTR was performed. In evaluation method, radiation source of maximum use of the nuclear fuel was calculated by using ORIGEN2 code. Dose equivalent rate for supervised area boundary was calculated by modeling reactor building at using shielding calculation codes QAD-CGGP2 and G33-GP2. As a result of evaluation, it was confirmed that the effective dose equivalent during year was low enough at supervised area boundary of the JMTR site.

Journal Articles

Reactions between U-Zr alloys and nitrogen

Akabori, Mitsuo; Ito, Akinori; Ogawa, Toru; Ugajin, Mitsuhiro

Journal of Alloys and Compounds, 213-214, p.366 - 368, 1994/00

 Times Cited Count:5 Percentile:48.01(Chemistry, Physical)

no abstracts in English

Oral presentation

Creating a database of irradiation facilities troubles

Ogawa, Mitsuhiro; Hosokawa, Jinsaku; Tomita, Kenji; Iimura, Koichi; Sakuta, Yoshiyuki

no journal, , 

no abstracts in English

13 (Records 1-13 displayed on this page)
  • 1