Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tsai, P.-E.; Iwamoto, Yosuke; Hagiwara, Masayuki*; Sato, Tatsuhiko; Ogawa, Tatsuhiko; Satoh, Daiki; Abe, Shinichiro; Ito, Masatoshi*; Watabe, Hiroshi*
Proceedings of 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2017) (Internet), 3 Pages, 2018/11
The energy spectra of primary knock-on atoms (PKAs) are essential for radiation damage assessment in design of accelerator facilities. However up to date the experimental data are still limited, due to the poor mass resolution and the high measurement threshold energies in the conventional setup of nuclear physics experiments using solid state detectors, which are typically above a few MeV/nucleon. In this study, a novel detection system consisting of two time detectors and one dE-E energy detector is proposed and being constructed to measure the PKA spectra. The system and detector design was based on Monte Carlo simulations by using the PHITS code. The PHITS simulations show that the system is able to distinguish the PKA isotopes above 0.2-0.3 MeV/nucleon for A=20
30 amu; the PKA mass identification thresholds decrease to
0.1 MeV/nucleon for PKAs lighter than 20 amu. The detection system will be tested in the summer of 2017, and the test results will be presented at the conference.
Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Tsai, P.-E.; Matsuda, Norihiro; Iwase, Hiroshi*; et al.
Journal of Nuclear Science and Technology, 55(6), p.684 - 690, 2018/06
Times Cited Count:601 Percentile:100(Nuclear Science & Technology)We have upgraded many features of the Particle and Heavy Ion Transport code System (PHITS) and released the new version as PHITS3.02. The accuracy and the applicable energy ranges of the code were greatly improved and extended, respectively, owing to the revisions to the nuclear reaction models and the incorporation of new atomic interaction models. In addition, several user-supportive functions were developed, such as new tallies to efficiently obtain statistically better results, radioisotope source-generation function, and software tools useful for applying PHITS to medical physics. In this paper, we summarize the basic features of PHITS3.02, especially those of the physics models and the functions implemented after the release of PHITS2.52 in 2013.
Hashimoto, Shintaro; Sato, Tatsuhiko; Iwamoto, Yosuke; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Niita, Koji*
Kaku Deta Nyusu (Internet), (120), p.26 - 34, 2018/06
Particle and heavy-ion transport code system PHITS has been used for calculations of radiation shielding in accelerator facilities. PHITS describes physical phenomena induced by radiation as combination of transport and collision processes. The collision process including nuclear reactions is simulated by the three-step calculation: a generation of a reaction, pre-equilibrium, and compound processes. In the simulation, many physics models are used. This report explains roles of the models in PHITS and shows their developments we recently performed.
Sato, Tatsuhiko; Niita, Koji*; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuda, Norihiro; Okumura, Keisuke; et al.
EPJ Web of Conferences, 153, p.06008_1 - 06008_6, 2017/09
Times Cited Count:5 Percentile:94.83Particle and Heavy Ion Transport code System, PHITS, has been developed under the collaboration of several institutes in Japan and Europe. It can deal with the transport of nearly all particles up to 1 TeV (per nucleon for ion) using various nuclear reaction models and data libraries. More than 2,500 researchers and technicians have used the code for a variety of applications such as accelerator design, radiation shielding and protection, medical physics, and space and geosciences. This paper briefly summarizes physics models and functions newly implemented in PHITS between versions 2.52 and 2.82.
Takada, Hiroshi; Haga, Katsuhiro; Teshigawara, Makoto; Aso, Tomokazu; Meigo, Shinichiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Oi, Motoki; Harada, Masahide; et al.
Quantum Beam Science (Internet), 1(2), p.8_1 - 8_26, 2017/09
At the Japan Proton Accelerator Research Complex (J-PARC), a pulsed spallation neutron source provides neutrons with high intensity and narrow pulse width to promote researches on a variety of science in the Materials and life science experimental facility. It was designed to be driven by the proton beam with an energy of 3 GeV, a power of 1 MW at a repetition rate of 25 Hz, that is world's highest power level. A mercury target and three types of liquid para-hydrogen moderators are core components of the spallation neutron source. It is still on the way towards the goal to accomplish the operation with a 1 MW proton beam. In this paper, distinctive features of the target-moderator-reflector system of the pulsed spallation neutron source are reviewed.
Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuda, Norihiro; Iwase, Hiroshi*; Niita, Koji*
Hoshasen, 43(2), p.55 - 58, 2017/05
Particle and Heavy Ion Transport code System, PHITS, has been developed under the collaboration of several institutes in Japan and Europe. It can deal with the transport of nearly all particles up to 1 TeV (per nucleon for ion) using various nuclear reaction models and data libraries. More than 2,500 registered researchers and technicians have used this system for various applications such as accelerator design, radiation shielding and protection, medical physics, and space- and geo-sciences. This paper summarizes the physics models and functions recently implemented in PHITS, between versions 2.52 and 2.88.
Iwamoto, Yosuke; Sato, Tatsuhiko; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuda, Norihiro; Hosoyamada, Ryuji*; Niita, Koji*
Journal of Nuclear Science and Technology, 54(5), p.617 - 635, 2017/05
Times Cited Count:75 Percentile:99.7(Nuclear Science & Technology)We performed a benchmark study for 58 cases using the recent version 2.88 of the Particle and Heavy Ion Transport code System (PHITS) in the following fields: particle production cross-sections for nuclear reactions, neutron transport calculations, and electro-magnetic cascade. This paper reports details for 22 cases. In cases of nuclear reactions with energies above 100 MeV and electro-magnetic cascade, overall agreements were found to be satisfactory. On the other hand, PHITS did not reproduce the experimental data for an incident proton energy below 100 MeV, because the intranuclear cascade model INCL4.6 in PHITS is not suitable for the low-energy region. For proton incident reactions over 100 MeV, PHITS did not reproduce fission product yields due to the problem of high-energy fission process in the evaporation model GEM. To overcome these inaccuracies, we are planning to incorporate a high-energy version of the evaluated nuclear data library JENDL-4.0/HE, and so on.
Ito, Masayasu; Ogawa, Miho; Inoue, Toshihiko; Yoshimochi, Hiroshi; Koyama, Shinichi; Koyama, Tomozo; Nakayama, Shinichi
Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 7 Pages, 2017/00
Laboratory-2 of the Okuma Analysis and Research Center will be used for the technological development of techniques to treat and dispose fuel debris, etc. The specific analytical content and its importance has been discussed by an experts committee in FY 2016. The committee regarded fuel debris retrieval and criticality control related topics as the most important content. As a result, it will be a priority to introduce equipment to perform examination such as shape and size measurement, compositional and nuclide analysis, hardness and toughness test, and radiation dose rate measurement. In addition, since sample will have high dose rates (1 Sv/h or more) at the time of reception, hot cells with enough radiation shielding ability will be used. In the hot cell, the pre-processing will be performed, such as cutting and dissolution of samples. Processed samples will be examined in concrete cells, steel cells, glove boxes and fume hoods. Detail design of Laboratory-2 started on FY 2017.
Inoue, Toshihiko; Ogawa, Miho; Sakazume, Yoshinori; Yoshimochi, Hiroshi; Sato, Soichi; Koyama, Shinichi; Koyama, Tomozo; Nakayama, Shinichi
Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 7 Pages, 2017/00
Decommissioning of TEPCO's 1F is in progress according to the Roadmap. The Roadmap assigned the construction of a hot laboratory and analysis to the JAEA. The hot laboratory, Okuma Analysis and Research Center consists of the three buildings; Administrative building, the Laboratory-1 and Laboratory-2. The Laboratory-1 and Laboratory-2 are hot laboratories. Laboratory-1 is for radiometric analysis of low and medium level radioactive rubble and secondary wastes. The license of the Laboratory-1's implementation was approved by The Secretariat of the Nuclear Regulation Authority and the construction started in April 2017 and plans an operational start in 2020. Laboratory-2 provides concrete cells, steel cells for the analysis of the fuel debris and high level radioactive rubble. The Laboratory-2's major analysis items is reviewed by review meeting organized of cognoscente.
Tsuda, Shuichi; Sato, Tatsuhiko; Ogawa, Tatsuhiko; Sasaki, Shinichi*
JPS Conference Proceedings (Internet), 11, p.060004_1 - 060004_6, 2016/11
Track structure and energy deposition around charged particle beams in microscopic site of a living cell is important information for understanding of biological effects of energetic heavy ion beams. In this work, measurements of lineal energy () distributions for various kinds of ion beams have been performed for the verification of the microdosimetric function that incorporated in the PHITS code. In the international symposium focused on radiation detectors, the wall-less tissue equivalent proportional counter that developed in this study to measure
distributions will be introduced, together with a series of data.
Iwamoto, Yosuke; Sato, Tatsuhiko; Niita, Koji*; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Matsuda, Norihiro; Iwase, Hiroshi*; et al.
JAEA-Conf 2016-004, p.63 - 69, 2016/09
A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. PHITS users apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This presentation briefly summarizes the physics models implemented in PHITS, and introduces some new models such as muon-induced nuclear reaction model and a de-excitation model EBITEM. We will also present the radiation damage cross sections for materials, PKA spectra and kerma factors calculated by PHITS under the IAEA-CRP activity titled "Primary radiation damage cross section."
Nakajima, Kyo*; Teramoto, Takahiro*; Akagi, Hiroshi; Fujikawa, Takashi*; Majima, Takuya*; Minemoto, Shinichiro*; Ogawa, Kanade*; Sakai, Hirofumi*; Togashi, Tadashi*; Tono, Kensuke*; et al.
Scientific Reports (Internet), 5, p.14065_1 - 14065_11, 2015/09
Times Cited Count:36 Percentile:84.6(Multidisciplinary Sciences)We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I
molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data. In turn, we have demonstrated that this approach is a significant step toward the time-resolved imaging of molecular structures.
Tomizawa, Hiromitsu*; Sato, Takahiro*; Ogawa, Kanade*; Togawa, Kazuaki*; Tanaka, Takatsugu*; Hara, Toru*; Yabashi, Makina*; Tanaka, Hitoshi*; Ishikawa, Tetsuya*; Togashi, Tadashi*; et al.
High Power Laser Science and Engineering, 3, p.e14_1 - e14_10, 2015/04
Times Cited Count:6 Percentile:36.13(Optics)no abstracts in English
Motokawa, Ryuhei; Endo, Hitoshi*; Yokoyama, Shingo*; Ogawa, Hiroki*; Kobayashi, Toru; Suzuki, Shinichi; Yaita, Tsuyoshi
Langmuir, 30(50), p.15127 - 15134, 2014/12
Times Cited Count:25 Percentile:63.18(Chemistry, Multidisciplinary)Chishiro, Etsuji; Kawamura, Masato*; Sagawa, Ryu*; Ogawa, Shinichi*
Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1091 - 1093, 2014/10
In J-PARC linac, six units of high voltage power supplies for 324 MHz klystrons have operated since 2006, and those running time exceed 35,000 hours. In addition, six units of power supplies for the 972 MHz klystrons have been operation since 2013. In the power supply, various troubles occur under the operation. In some anode modulators, arc discharge in the transformer oil had occurred due to the deterioration of the auxiliary solid insulator. In three modules combining a step-up transformer and a rectifier, the high voltage diode was breakdown because an unexpected overvoltage was applied. And by improving the voltage dividing resistor of the module, high stability cathode voltage was achieved. In this report, we describe the trouble and the improvement that occurred in the equipment.
Kawamura, Masato*; Chishiro, Etsuji; Hori, Toshihiko; Shinozaki, Shinichi; Sato, Fumiaki; Fukui, Yuji*; Futatsukawa, Kenta*; Yamazaki, Masayoshi*; Sagawa, Ryu*; Miyajima, Noriyuki*; et al.
Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.605 - 607, 2014/06
This report describes the present status of the klystron power supply systems for the J-PARC linac. The systems for the 181 MeV linac were operated from September to May. A few breakdowns were occurred, and are described in this report. The new systems for the upgrade of the linac from 181MeV to 400 MeV have been installed until now, and the 3 HVDCPSs and the 3 anode modulators of the new systems have been operated. All the systems for 400 MeV linac will be operated in this autumn.
Yano, Yasuhide; Otsuka, Satoshi; Yamashita, Shinichiro; Ogawa, Ryuichiro; Sekine, Manabu; Endo, Toshiaki; Yamagata, Ichiro; Sekio, Yoshihiro; Tanno, Takashi; Uwaba, Tomoyuki; et al.
JAEA-Research 2013-030, 57 Pages, 2013/11
It is necessary to develop the fast reactor core materials, which can achieve high-burnup operation improving safety and economical performance. Ferritic steels are expected to be good candidate core materials to achieve this objective because of their excellent void swelling resistance. Therefore, oxide dispersion strengthened (ODS) ferritic steel and 11Cr-ferritic/martensitic steel (PNC-FMS) have been respectively developed for cladding and wrapper tube materials in Japan Atomic Energy Agency. In this study, the effects of fast neutron irradiation on mechanical properties and microstructure of 9Cr-and 12Cr-ODS steel claddings for fast reactor were investigated. Specimens were irradiated in the experimental fast reactor Joyo using the CMIR-6 at temperatures between 420 and 835C to fast neutron doses ranging from 16 to 33 dpa. The post-irradiation ring tensile tests were carried out at irradiation temperatures.
Sato, Takahiro*; Iwasaki, Atsushi*; Owada, Shigeki*; Yamanouchi, Kaoru*; Takahashi, Eiji*; Midorikawa, Katsumi*; Aoyama, Makoto; Yamakawa, Koichi; Togashi, Tadashi*; Fukami, Kenji*; et al.
Journal of Physics B; Atomic, Molecular and Optical Physics, 46(16), p.164006_1 - 164006_6, 2013/08
Times Cited Count:3 Percentile:19.7(Optics)By introducing 13th- (61.7 nm) and 15th-order harmonics (53.4 nm) of femtosecond laser pulses at 800 nm into an undulator of SCSS (SPring-8 Compact SASE Source) test accelerator at RIKEN, these harmonic pulses were amplified by a factor of more than 10 with a high contrast ratio through the interaction between accelerated electron bunches and the harmonic pulses. From numerical simulations of the amplification processes of high-order harmonic pulses in the undulator, optimum conditions of the electron bunch duration interacting with the high-order harmonic pulses were investigated for generating full-coherent and intense pulses in the extreme ultraviolet wavelength region.
Kawamura, Masato*; Chishiro, Etsuji; Hori, Toshihiko; Shinozaki, Shinichi; Sato, Fumiaki; Fukui, Yuji*; Futatsukawa, Kenta*; Yamazaki, Masayoshi*; Sagawa, Ryu*; Yukitake, Mitsuteru*; et al.
Proceedings of 9th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1243 - 1247, 2013/08
no abstracts in English
Ogawa, Kanade*; Sato, Takahiro*; Matsubara, Shinichi*; Okayasu, Yuichi*; Togashi, Tadashi*; Watanabe, Takahiro*; Takahashi, Eiji*; Midorikawa, Katsumi*; Aoyama, Makoto; Yamakawa, Koichi; et al.
Proceedings of 10th Conference on Lasers and Electro-Optics Pacific Rim and 18th OptoElectronics and Communications Conference and Photonics in Switching 2013 (CLEO-PR & OECC/PS 2013) (USB Flash Drive), 2 Pages, 2013/06
no abstracts in English