Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakamoto, Mio*; Sugano, Michinaka*; Ogitsu, Toru*; Sugimoto, Masahiro*; Taniguchi, Ryo*; Hirose, Kiyoshige*; Kawasaki, Takuro; Gong, W.; Harjo, S.; Awaji, Satoshi*; et al.
IEEE Transactions on Applied Superconductivity, 34(5), p.8400806_1 - 8400806_6, 2024/08
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Abe, Mitsushi*; Bae, S.*; Beer, G.*; Bunce, G.*; Choi, H.*; Choi, S.*; Chung, M.*; da Silva, W.*; Eidelman, S.*; Finger, M.*; et al.
Progress of Theoretical and Experimental Physics (Internet), 2019(5), p.053C02_1 - 053C02_22, 2019/05
Times Cited Count:161 Percentile:99.30(Physics, Multidisciplinary)This paper introduces a new approach to measure the muon magnetic moment anomaly and the muon electric dipole moment (EDM)
at the J-PARC muon facility. The goal of our experiment is to measure
and
using an independent method with a factor of 10 lower muon momentum, and a factor of 20 smaller diameter storage-ring solenoid compared with previous and ongoing muon g-2 experiments with unprecedented quality of the storage magnetic field. Additional significant differences from the present experimental method include a factor of 1000 smaller transverse emittance of the muon beam (reaccelerated thermal muon beam), its efficient vertical injection into the solenoid, and tracking each decay positron from muon decay to obtain its momentum vector. The precision goal for
is a statistical uncertainty of 450 parts per billion (ppb), similar to the present experimental uncertainty, and a systematic uncertainty less than 70 ppb. The goal for EDM is a sensitivity of
e
cm.
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:16 Percentile:98.61(Quantum Science & Technology)Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:4 Percentile:87.91(Physics, Atomic, Molecular & Chemical)Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:7 Percentile:89.35(Physics, Atomic, Molecular & Chemical)Nakamoto, Tatsushi*; Sugano, Michinaka*; Xu, Q.*; Kawamata, Hiroshi*; Enomoto, Shun*; Higashi, Norio*; Idesaki, Akira; Iio, Masami*; Ikemoto, Yukio*; Iwasaki, Ruri*; et al.
IEEE Transactions on Applied Superconductivity, 25(3), p.4000505_1 - 4000505_5, 2015/06
Times Cited Count:1 Percentile:7.96(Engineering, Electrical & Electronic)Recently, development of superconducting magnet system with high radiation resistance has been demanded for application in accelerator facilities such as CERN LHC. In order to realize superconducting magnet system with high radiation resistance, it is necessary to develop electrical insulator with high radiation resistance because the electrical insulator is made of organic materials whose radiation resistance is inferior to that of inorganic materials. We developed a glass fiber reinforced plastic with bismaleimide-triazine resin. The developed material showed excellent radiation resistance; the material evolved gases of 510
mol/g and maintained flexural strength of 640MPa (90% of initial value).
Iwamoto, Yosuke; Yoshiie, Toshimasa*; Yoshida, Makoto*; Nakamoto, Tatsushi*; Sakamoto, Masaaki*; Kuriyama, Yasutoshi*; Uesugi, Tomonori*; Ishi, Yoshihiro*; Xu, Q.*; Yashima, Hiroshi*; et al.
Journal of Nuclear Materials, 458, p.369 - 375, 2015/03
Times Cited Count:15 Percentile:73.95(Materials Science, Multidisciplinary)To validate Monte Carlo codes for the prediction of radiation damage in metals irradiated by 100 MeV protons, defect-induced electrical resistivity changes of copper related to the displacement cross-section were measured with 125 MeV proton irradiation at 12 K. The cryogenic irradiation system was developed with a Gifford-McMahon cryocooler to cool the sample via an oxygen-free high-conductivity copper plate by conduction cooling. The sample was a copper wire with a 250
m diameter and 99.999% purity sandwiched between two aluminum nitride ceramic sheets. The resistivity increase did not change during annealing after irradiation below 15 K. The experimental displacement cross-section for 125 MeV irradiation shows similar results to the experimental data for 1.1 and 1.94 GeV. Comparison with the calculated results indicated that the defect production efficiency in Monte Carlo codes gives a good quantitative description of the displacement cross-section in the energy region
100 MeV.
Ito, Takayoshi; Harjo, S.; Osamura, Kozo*; Hemmi, Tsutomu; Awaji, Satoshi*; Machiya, Shutaro*; Oguro, Hidetoshi*; Nishijima, Gen*; Takahashi, Koki*; Matsui, Kunihiro; et al.
Materials Science Forum, 681, p.209 - 214, 2011/05
Times Cited Count:1 Percentile:50.35(Materials Science, Multidisciplinary)Nakamoto, Tatsushi*; Ohata, Hirokatsu*; Ogitsu, Toru*; Kimura, Nobuhiro*; Makida, Yasuhiro*; Yamamoto, Akira*; Idesaki, Akira; Gokan, Mayo*; Morishita, Norio; Ito, Hisayoshi
JAEA-Review 2006-042, JAEA Takasaki Annual Report 2005, P. 31, 2007/02
Radiation resistance of organic materials used in superconducting magnets for a 50 GeV - 750 kW proton beam line for the J-PARC neutrino experiment was studied with respect to mechanical properties. Specimens cooled at a liquid nitrogen temperature of 77 K were irradiated by rays. The flexural strength of glass-fiber reinforced plastics (GFRPs), the tear strength of polyimide films and the tensile strength of adhesive films were evaluated. It was verified that the organic materials used in the superconducting magnets have the sufficient radiation resistance, and the degradation of thier mechanical properties after the 10 years operation was estimated to be negligible.
Idesaki, Akira; Gokan, Mayo*; Morishita, Norio; Ito, Hisayoshi; Nakamoto, Tatsushi*; Ogitsu, Toru*; Ohata, Hirokatsu*; Kimura, Nobuhiro*; Makida, Yasuhiro*; Yamamoto, Akira*
JAEA-Review 2006-042, JAEA Takasaki Annual Report 2005, P. 32, 2007/02
Radiation resistance of polymeric materials used in the superconducting magnets installed for the J-PARC neutrino beam line was studied with respect to gas evolution. The polymeric materials were irradiated by rays at 77K. It was found that hydrogen gas evolved mainly from the polymeric materials, and the amount of hydrogen from whole superconducting magnet system per 1 year was estimated to be 0.37mol. This amount of hydrogen is low enough to be removed by a hydrogen absorbing apparatus. Therefore, the influence of hydrogen evolved from the magnet system on the operation of the helium purifying system can be negligible.
Makida, Yasuhiro*; Ohata, Hirokatsu*; Okamura, Takahiro*; Ogitsu, Toru*; Nakamoto, Tatsushi*; Kimura, Nobuhiro*; Idesaki, Akira; Gokan, Mayo*; Morishita, Norio
JAEA-Review 2006-042, JAEA Takasaki Annual Report 2005, P. 34, 2007/02
A string of superconducting magnets is to be set at an arc section of the J-PARC neutrino beam line. To keep the magnets at superconducting condition, a helium cryogenic facility is to be constructed. Parts of cryogenic devices are located beside the magnets, so thier resistance to radiation with predicted dose of 1 MGy in maximum must be assured. A cryogenic control valve is one of the active devices used in the radio-active area, and its radio-proof characteristics is improved by (1) exchaging intolerant materials by proof ones, (2) moving the feed back control circuit unit including electronics from the valve body to a low radio-active area. Two prototype valves, a tuning valve and a Gauzky relief valve, have been prepared and have been tested by using the Cobalt 60 irradiation facility in JAEA. Actual operations of the both prototypes have been checked at the irradiation test bench, and they were successfully operated after irradiation of 1 MGy.
Idesaki, Akira; Morishita, Norio; Ito, Hisayoshi; Kamiya, Tomihiro; Nakamoto, Tatsushi*; Kimura, Nobuhiro*; Makida, Yasuhiro*; Ogitsu, Toru*; Ohata, Hirokatsu*; Yamamoto, Akira*
AIP Conference Proceedings 824, p.330 - 334, 2006/03
Polyimide films and glass fiber reinforced plastics (GFRPs) are used as insulating or structural materials for superconducting magnets in a neutrino beam line of the Japan Proton Accelerator Research Complex (J-PARC). It is indispensable to evaluate radiation resistance of these materials, because they are required to keep their electrical and mechanical properties in a high radiation field of 30 kGy/year at low temperature of 4 K. In this work, the gas evolution resulting from chemical reactions induced in the polyimide films and GFRPs by ray irradiation at 77 K was investigated. It was found that the main component of the evolved gas is hydrogen. The amount of hydrogen evolved from the superconducting magnet system used in the neutrino beam line was estimated to be 0.37 mol/year (0.01 L/year as the volume of liquid hydrogen). It indicates that the hydrogen evolved from the organic materials does not influence on the operation of the helium purifying system.
Nakamoto, Tatsushi*; Idesaki, Akira; Morishita, Norio; Ito, Hisayoshi; Kamiya, Tomihiro; Kimura, Nobuhiro*; Makida, Yasuhiro*; Ogitsu, Toru*; Ohata, Hirokatsu*; Yamamoto, Akira*
AIP Conference Proceedings 824, p.225 - 232, 2006/03
Radiation resistance with respect to mechanical properties of organic materials used in the superconducting magnets for the 50 GeV - 750 kW proton beam line for the J-PARC neutrino experiment was studied. Specimens cooled at liquid nitrogen temperature of 77 K were irradiated by gamma rays beyond 10 MGy. The flexural strength of glass-fiber reinforced plastics (GFRPs), the tear strength of polyimide films and the tensile lap-shear strength of adhesive films were evaluated. It was verified that the organic materials used in the superconducting magnet have a sufficient radiation resistance, and the degradation of their mechanical properties after 10 years operation was estimated to be negligible.
Iwamoto, Yosuke; Yoshiie, Toshimasa*; Yoshida, Makoto*; Nakamoto, Tatsushi*; Sakamoto, Masaaki*; Kuriyama, Yasutoshi*; Uesugi, Tomonori*; Ishi, Yoshihiro*; Xu, Q.*; Yashima, Hiroshi*; et al.
no journal, ,
To validate the radiation damage calculation in the PHITS code for proton irradiation over 100 MeV, we have developed the device for electrical resistance measurement under cryogenic condition. A copper wire with 99.999% purity in a diameter of 250-m was set with a serpentine-shaped line on the AlN sheet which has high thermal conductivity and electric insulation. The sample was annealed for 1 h at 1,000
C before irradiation. After annealing, the sample was cooled with an oxygen-free high-conductivity copper plate by conduction cooling. The electrical resistivity changes in the sample were measured using the four-probe technique. As a result, the residual resistivity ratio of the sample was about 1,800 between room temperature and 11 K. After 125 MeV proton irradiation with 1.45
10
(proton/cm
) at 11 K, the total resistance increase was 1.53
, while the resistivity of copper before irradiation was 29.41
.
Sugita, Moe; Abe, Mitsushi*; Iinuma, Hiromi*; Ogane, Chiori; Ogitsu, Toru*; Sasaki, Kenichi*; Mibe, Tsutomu*; Shimomura, Koichiro*
no journal, ,
The MuSEUM experiment at J-PARC requires a long-term stability of less than 0.2 ppm time variation of magnetic field and less than 0.2 ppm (p-p) homogeneity for the ellipsoidal region of 20 cm in diameter and 30 cm in length. The superconducting magnet used in the MuSEUM experiment takes a method of shimming to adjust homogeneity by placing iron shims. The factors changing magnetic field with temperature is considered the location shift of shims due to the thermal expansion of the shimming structures and the temperature dependence of iron magnetization. Therefore, the magnetic field was measured during heating the shimming structure, and the temperature dependence of magnetic field was confirmed. In addition, location-shift and magnetization change were calculated by simulation. Based on the measurement and simulation results, it is necessary to control the room temperature within 0.2 K to keep long-term stability in the current experimental system.
Idesaki, Akira; Nakamoto, Tatsushi*; Ogitsu, Toru*; Ohata, Hirokatsu*; Kimura, Nobuhiro*; Makida, Yasuhiro*; Yamamoto, Akira*; Gokan, Mayo*; Morishita, Norio; Ito, Hisayoshi
no journal, ,
Radiation resistance of polymeric materials used in superconducting magnets for a 50 GeV-750 kW proton beam line for the J-PARC neutrino experiment was studied with respect to mechanical properties. Specimens were irradiated by rays with the maximum dose beyond 10 MGy. It was verified that the polymeric materials have the sufficient radiation resistance, and the degradation of their mechanical properties after the 10 years operation was estimated to be negligible.
Nakamoto, Tatsushi*; Ohata, Hirokatsu*; Ogitsu, Toru*; Kimura, Nobuhiro*; Makida, Yasuhiro*; Yamamoto, Akira*; Idesaki, Akira; Ito, Hisayoshi; Morishita, Norio
no journal, ,
A Superconducting magnet system will be adopted for the J-PARC neutrino beam line. GFRPs whose matrices are phenol resin and epoxy resin, and polyimides are used as structural materials and electrical insulation. Radiation resistance of these polymeric materials is very important, because they are exposed to high radiation field. In this work, specimens were irradiated by rays with the maximum dose beyond 10MGy at liquid nitrogen temperature (77K), and the properties of gas evolution and mechanical strength were investigated. It was verified experimentally that the polymeric materials have sufficient radiation resistance for the using in the J-PARC neutrino beam line.
Idesaki, Akira; Gokan, Mayo*; Morishita, Norio; Ito, Hisayoshi; Nakamoto, Tatsushi*; Ogitsu, Toru*; Ohata, Hirokatsu*; Kimura, Nobuhiro*; Makida, Yasuhiro*; Yamamoto, Akira*
no journal, ,
Irradiation effect on polymeric materials used in the superconducting magnets for the J-PARC neutrino beam line was studied with respect to gas evolution. The polymeric materials were irradiated by -ray at 77K. It was found that hydrogen gas evolves mainly from the polymeric materials, and that the amount of hydrogen from whole superconducting magnet system per 1 year is 0.37 mol.
Nakamoto, Tatsushi*; Ohata, Hirokatsu*; Ogitsu, Toru*; Kimura, Nobuhiro*; Makida, Yasuhiro*; Yamamoto, Akira*; Idesaki, Akira; Gokan, Mayo*; Morishita, Norio; Ito, Hisayoshi
no journal, ,
A Superconducting magnet system will be adopted for the J-PARC neutrino beam line. GFRPs whose matrices are phenol resin and epoxy resin, and polyimides are used as structural materials and electrical insulation. Radiation resistance of these polymeric materials is very important, because they are exposed to high radiation field. In this work, specimens were irradiated by rays with the maximum dose beyond 10 MGy at liquid nitrogen temperature (77K), and the mechanical properties were investigated. It was verified experimentally that the polymeric materials have sufficient radiation resistance for the using in the J-PARC neutrino beam line.
Makida, Yasuhiro*; Ohata, Hirokatsu*; Okamura, Takahiro*; Ogitsu, Toru*; Nakamoto, Tatsushi*; Kimura, Nobuhiro*; Idesaki, Akira; Gokan, Mayo*; Morishita, Norio
no journal, ,
A Superconducting magnet system will be adopted for the J-PARC neutrino beam line. Since the magnet system will be exposed to high radiation field, the radiation resistance of a cryostat is very important. We have developed radio-proof control valve and relief valve by selection of some parts and separation of the positioner. In this work, the developed valves were worked under the ray irradiation, and it was found that the valves show the radiation resistance above 1 MGy.