Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 271

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Experimental visualization of water/ice phase distribution at cold start for practical-sized polymer electrolyte fuel cells

Higuchi, Yuki*; Yoshimune, Wataru*; Kato, Satoru*; Hibi, Shogo*; Setoyama, Daigo*; Isegawa, Kazuhisa*; Matsumoto, Yoshihiro*; Hayashida, Hirotoshi*; Nozaki, Hiroshi*; Harada, Masashi*; et al.

Communications Engineering (Internet), 3, p.33_1 - 33_7, 2024/02

Journal Articles

In situ neutron imaging of lithium-ion batteries during heating to thermal runaway

Nozaki, Hiroshi*; Kondo, Hiroki*; Shinohara, Takenao; Setoyama, Daigo*; Matsumoto, Yoshihiro*; Sasaki, Tsuyoshi*; Isegawa, Kazuhisa*; Hayashida, Hirotoshi*

Scientific Reports (Internet), 13, p.22082_1 - 22082_8, 2023/12

Journal Articles

Corrigendum to "Visualization of the working fluid in a flat-plate pulsating heat pipe by neutron radiography" [International Journal of Heat and Mass Transfer 185 (2022) 122336]

Yasuda, Yosuke*; Matsumoto, Yoshihiro*; Shinohara, Takenao; Nabeshima, Fumika*; Horiuchi, Keisuke*; Nagai, Hiroki*

International Journal of Heat and Mass Transfer, 213, p.124291_1 - 124291_2, 2023/10

Journal Articles

3D water management in polymer electrolyte fuel cells toward fuel cell electric vehicles

Yoshimune, Wataru*; Higuchi, Yuki*; Kato, Akihiko*; Hibi, Shogo*; Yamaguchi, Satoshi*; Matsumoto, Yoshihiro*; Hayashida, Hirotoshi*; Nozaki, Hiroshi*; Shinohara, Takenao; Kato, Satoru*

ACS Energy Letters (Internet), 8(8), p.3485 - 3487, 2023/08

Journal Articles

Neutron resonance absorption imaging of simulated high-level radioactive waste in borosilicate glass

Oba, Yojiro; Motokawa, Ryuhei; Kaneko, Koji; Nagai, Takayuki; Tsuchikawa, Yusuke; Shinohara, Takenao; Parker, J. D.*; Okamoto, Yoshihiro

Scientific Reports (Internet), 13, p.10071_1 - 10071_8, 2023/06

 Times Cited Count:0 Percentile:0.01

Journal Articles

Fast phase differentiation between liquid-water and ice by pulsed neutron imaging with gated image intensifier

Isegawa, Kazuhisa; Setoyama, Daigo*; Higuchi, Yuki*; Matsumoto, Yoshihiro*; Nagai, Yasutaka*; Shinohara, Takenao

Nuclear Instruments and Methods in Physics Research A, 1040, p.167260_1 - 167260_10, 2022/10

 Times Cited Count:1 Percentile:34.54(Instruments & Instrumentation)

Journal Articles

Mesospheric ionization during substorm growth phase

Murase, Kiyoka*; Kataoka, Ryuho*; Nishiyama, Takanori*; Nishimura, Koji*; Hashimoto, Taishi*; Tanaka, Yoshimasa*; Kadokura, Akira*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Ogawa, Yasunobu*; et al.

Journal of Space Weather and Space Climate (Internet), 12, p.18_1 - 18_16, 2022/06

 Times Cited Count:0 Percentile:24.42(Astronomy & Astrophysics)

We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP event for which the most comprehensive dataset from ground-based and space-born instruments was available. The mesospheric ionization signature reached below 70 km altitude and continued for ~15 min until the substorm onset, as observed by the PANSY radar and imaging riometer at Syowa Station in the Antarctic region. We also used energetic electron flux observed by the Arase and POES 15 satellites as the input for the air-shower simulation code PHITS to quantitatively estimate the mesospheric ionization rate. Combining the cutting-edge observations and simulations, we shed new light on the space weather impact of the EEP events during geomagnetically quiet times, which is important to understand the possible link between the space environment and climate.

Journal Articles

Evaluation on laser quenching heat transfer mechanism using numerical method and improvement of quenching depth

Kitagawa, Yoshihiro; Shirahama, Takuma*; Kisohara, Naoyuki; Tsuboi, Akihiko

Dai-96-Kai Reza Kako Gakkai Koen Rombunshu (Internet), p.91 - 96, 2022/01

Laser scanning quenching is a locally and rapidly heat-treated process and has an advantage of no coolant required. Compared with conventional technique such as induction quenching, the region of laser quenching is about 0.5$$sim$$0.7mm in depth and it needs to be expanded for more applications or durability. For this purpose, the temperature distributions and transitions in materials during laser irradiation have been revealed by using a 3D heat transfer computer code, micro-structural observation and hardness transitions in depth direction. The results indicate the laser irradiation with low power and low scan speed condition allows deeper quenching area, but it also suggests the hardness of the deepest quenching area is degraded due to slow temperature decreasing rate after laser heat scanning. Multiple times continuous irradiation have been proposed and studied to resolve this hardness degradation, and maximum quenching depth of 1.4mm is obtained under three times irradiation and controlling its power and scan speed properly.

Journal Articles

Visualization of the boron distribution in core material melting and relocation specimen by neutron energy resolving method

Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken

JPS Conference Proceedings (Internet), 33, p.011075_1 - 011075_6, 2021/03

Journal Articles

Feasibility study of PGAA for boride identification in simulated melted core materials

Tsuchikawa, Yusuke; Abe, Yuta; Oishi, Yuji*; Kai, Tetsuya; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto; Kimura, Atsushi; Nakamura, Shoji; Harada, Masahide; et al.

JPS Conference Proceedings (Internet), 33, p.011074_1 - 011074_6, 2021/03

In the decommissioning of the Fukushima-Daiichi (1F) Nuclear Power Plant, it is essential to understand characteristics of the melted core materials. The estimation of boride in the real debris is of great importance to develop safe debris removal plans. Hence, it is required to investigate the amount of boron in the melted core materials with nondestructive methods. Prompt gamma-ray activation analysis (PGAA) is one of the useful techniques to determine the amount of borides by means of the 478 keV prompt gamma-ray from neutron absorption reaction of boron. Moreover, it is well known that the width of the 478 keV gamma-ray peak is typically broadened due to the Doppler effect. The degree of the broadening is affected by coexisting materials, and can be recognized by the width of the prompt gamma-ray peak. As a feasibility study, the prompt gamma-ray from boride samples were measured using the ANNRI, NOBORU, and RADEN beamlines at the Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Complex (J-PARC).

Journal Articles

Pulsed neutron imaging for differentiation of ice and liquid water towards fuel cell vehicle applications

Higuchi, Yuki*; Setoyama, Daigo*; Isegawa, Kazuhisa; Tsuchikawa, Yusuke; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Nagai, Yasutaka*

Physical Chemistry Chemical Physics, 23(2), p.1062 - 1071, 2021/01

 Times Cited Count:5 Percentile:54.2(Chemistry, Physical)

This study is the first report on liquid water and ice imaging conducted at a pulsed spallation neutron source facility. Neutron imaging can be utilised to visualise the water distribution inside polymer electrolyte fuel cells (PEFCs). Particularly, energy-resolved neutron imaging is a methodology capable of distinguishing between liquid water and ice, and is effective for investigating ice formation in PEFCs operating in a subfreezing environment. The distinction principle is based on the fact that the cross sections of liquid water and ice differ from each other at low neutron energies. In order to quantitatively observe transient freezing and thawing phenomena in a multiphase mixture (gas/liquid/solid) within real PEFCs with high spatial resolution, a pulsed neutron beam with both high intensity and wide energy range is most appropriate. In the validation study of the present work, we used water sealed in narrow capillary tubes to simulate the flow channels of a PEFC, and a pulsed neutron beam was applied to distinguish ice, liquid water and super-cooled water, and to clarify freezing and thawing phenomena of the water within the capillary tubes. Moreover, we have enabled the observation of liquid water/ice distributions in a large field of view (300 mm $$times$$ 300 mm) by manufacturing a sub-zero environment chamber that can be cooled down to -30$$^{circ}$$C, as a step towards ${it in situ}$ visualisation of full-size fuel cells.

Journal Articles

Development of three-dimensional distribution visualization technology for boron using energy resolved neutron-imaging system (RADEN)

Abe, Yuta; Tsuchikawa, Yusuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Parker, J. D.*; Shinohara, Takenao; Oishi, Yuji*; Kamiyama, Takashi*; Nagae, Yuji; Sato, Ikken

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

Journal Articles

Development of event-type neutron imaging detectors at the energy-resolved neutron imaging system RADEN at J-PARC

Parker, J. D.*; Harada, Masahide; Hayashida, Hirotoshi*; Hiroi, Kosuke; Kai, Tetsuya; Matsumoto, Yoshihiro*; Nakatani, Takeshi; Oikawa, Kenichi; Segawa, Mariko; Shinohara, Takenao; et al.

Materials Research Proceedings, Vol.15, p.102 - 107, 2020/05

Journal Articles

The Energy-resolved neutron imaging system, RADEN

Shinohara, Takenao; Kai, Tetsuya; Oikawa, Kenichi; Nakatani, Takeshi; Segawa, Mariko; Hiroi, Kosuke; Su, Y. H.; Oi, Motoki; Harada, Masahide; Iikura, Hiroshi; et al.

Review of Scientific Instruments, 91(4), p.043302_1 - 043302_20, 2020/04

 Times Cited Count:42 Percentile:96.38(Instruments & Instrumentation)

Journal Articles

Applications of the energy-resolved neutron imaging system, RADEN

Kai, Tetsuya; Shinohara, Takenao; Matsumoto, Yoshihiro*

Kensa Gijutsu, 25(2), p.1 - 5, 2020/02

no abstracts in English

Journal Articles

Pulsed neutron imaging based crystallographic structure study of a Japanese sword made by Sukemasa in the Muromachi period

Oikawa, Kenichi; Kiyanagi, Yoshiaki*; Sato, Hirotaka*; Omae, Kazuma*; Pham, A.*; Watanabe, Kenichi*; Matsumoto, Yoshihiro*; Shinohara, Takenao; Kai, Tetsuya; Harjo, S.; et al.

Materials Research Proceedings, Vol.15, p.207 - 213, 2020/02

Journal Articles

Feasibility study of two-dimensional neutron-resonance thermometry using molybdenum in 316 stainless-steel

Kai, Tetsuya; Hiroi, Kosuke; Su, Y. H.; Segawa, Mariko; Shinohara, Takenao; Matsumoto, Yoshihiro*; Parker, J. D.*; Hayashida, Hirotoshi*; Oikawa, Kenichi

Materials Research Proceedings, Vol.15, p.149 - 153, 2020/02

Journal Articles

Neutron computed tomography of phase separation structures in solidified Cu-Co alloys and investigation of relationship between the structures and melt convection during solidification

Shoji, Eita*; Isogai, Shosei*; Suzuki, Rikuto*; Kubo, Masaki*; Tsukada, Takao*; Kai, Tetsuya; Shinohara, Takenao; Matsumoto, Yoshihiro*; Fukuyama, Hiroyuki*

Scripta Materialia, 175, p.29 - 32, 2020/01

 Times Cited Count:17 Percentile:79.05(Nanoscience & Nanotechnology)

Journal Articles

Transient ionization of the mesosphere during auroral breakup; Arase satellite and ground-based conjugate observations at Syowa Station

Kataoka, Ryuho*; Nishiyama, Takanori*; Tanaka, Yoshimasa*; Kadokura, Akira*; Uchida, Herbert Akihito*; Ebihara, Yusuke*; Ejiri, Mitsumu*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Sato, Kaoru*; et al.

Earth, Planets and Space (Internet), 71(1), p.9_1 - 9_10, 2019/12

 Times Cited Count:7 Percentile:40.92(Geosciences, Multidisciplinary)

Transient ionization of the mesosphere was detected at around 65 km altitude during the isolated auroral expansion occurred at 2221-2226 UT on June 30, 2017. A general-purpose Monte Carlo particle transport code PHITS suggested that significant ionization is possible in the middle atmosphere due to auroral X-rays from the auroral electrons of $$<$$10 keV.

Journal Articles

Recent progress on practical materials study by Bragg edge imaging at J-PARC

Oikawa, Kenichi; Su, Y.; Kiyanagi, Ryoji; Kawasaki, Takuro; Shinohara, Takenao; Kai, Tetsuya; Hiroi, Kosuke; Harjo, S.; Parker, J. D.*; Matsumoto, Yoshihiro*; et al.

Physica B; Condensed Matter, 551, p.436 - 442, 2018/12

 Times Cited Count:5 Percentile:30.6(Physics, Condensed Matter)

271 (Records 1-20 displayed on this page)