Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Structure of basaltic glass at pressures up to 18 GPa

Ohashi, Tomonori*; Sakamaki, Tatsuya*; Funakoshi, Kenichi*; Hattori, Takanori; Hisano, Naoki*; Abe, Jun*; Suzuki, Akio*

American Mineralogist, 107(3), p.325 - 335, 2022/03

 Times Cited Count:1 Percentile:22.72(Geochemistry & Geophysics)

The basaltic glass structure were investigated to 18 GPa using in situ X-ray and neutron diffraction. The O-O coordination number (CN$$_textrm{OO}$$) starts to rise with maintaining the mean O-O distance (r$$_textrm{OO}$$) above 2-4 GPa, and then CN$$_textrm{OO}$$ stops increasing and r$$_textrm{OO}$$ begins to shrink along with the increase in the Al-O coordination number (CN$$_textrm{AlO}$$) above 9 GPa. This is interpreted by the change in the contraction mechanism from tetrahedral network bending to oxygen packing ratio increase via the CN$$_textrm{AlO}$$ increase. The oxygen packing fraction exceeds the value for dense random packing, suggesting that the oxygen-packing hypothesis cannot account for the pressure-induced structural transformations of silica and silicate glasses. The CN$$_textrm{OO}$$ increase at 2-4 GPa reflects the elastic softening of silicate glass, which may causes anomalous elastic moduli of basaltic glass at $$sim$$ 2 GPa.

1 (Records 1-1 displayed on this page)
  • 1